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abstract

One of the most useful mathematical tool in biological application is
the network analysis. Networks can describe interactions between building
blocks of organism such proteins, genes and metabolism. We focus on the
role of networks in genes and particularly we deal with gene regulatory net-
work reconstruction methods. Gene regulatory network inference has gained
an increasing interest in the last few years mainly due to the vast amount of
genetic information generated by new-generation approaches. Therefore, per-
forming the back engineering task of identifying gene interactions based on
a huge amount of gene expression data requires modern algorithm developed
in the field of machine learning. Here, we perform a detailed description of
the problem of gene regulatory network reconstruction focusing on the most
recent and efficient machine learning methods employed in inference. We
also describe analytically how a simulation analysis could be performed in
order the efficiency of specific machine learning algorithms in Gene regulatory
network inference to be tested.
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Chapter 1

Introduction

The collection and analysis of network data plays a key role in a wide range
of scientific fields. Nowadays, there is an explosion of data obtained from
systems that can be conceptualized as networks. Examples include, but
are not limited to, applications in biology, computer science, sociology and
economics (Newman, 2012; Kolaczyk and Csárdi, 2014).

Here, we focus on the role of networks in biology. More precisely, the field
of network analysis play a prominent role in understanding the functionali-
ties of any organism. Therefore, network models are key tools in identifying
interactions between biological elements which are building tools of living
organism. In particular, network models are typically employed to model
interaction between proteins (Protein-Protein networks), genes (Gene net-
works) as well as metabolites (metobolic networks). Our focus here are the
Gene networks and particularly the, so-called, Gene Regulatory Networks
(GRNs). A GRN can be described as the mechanism of maintaining life pro-
cess, controlling biochemical reaction and regulating compound level, which
plays an important role in various organisms and systems.

More specifically, we deal with the important process of GRN reconstruc-
tion. This process can be understood as a reverse engineering process where
starting from gene expression data we attempt to identify the interaction be-
tween the genes and, thus, to understand the complexity, functionality and
pathways of the biological systems. This in turn can have a huge impact in
improving disease treatments by developing novel drugs. However, the recent
advancements of microarray technologies and next generation sequencing, a
huge amount of expression data is available. Therefore, GRN construction
requires methods that can deal with the “big-data”. These methods are
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typically developed in the field of machine learning.
In the present thesis we first a brief, but necessary, introduction to the

notions of graph theory which underpins any network analysis and modelling.
Then, we describe the main biological networks focusing on a comprehensive
description of the GRNs. Subsequently, we describe the most recent and
efficient algorithms that re typically employed in GRN reconstruction.

2



Chapter 2

Networks

2.1 Basic definitions and notation

Here we give basic definitions and notation that will be used throughout the
thesis. In particular, we provide definitions for basic network concepts.

A graph (or network) is defined as 𝐺 = (𝑉,𝐸) where 𝑉 is the set of
vertices and 𝐸 ⊂ 𝑉 × 𝑉 is the set of edges. In a directed graph every edge
(𝑖, 𝑗) ∈ 𝐸 links vertex 𝑖 to vertex 𝑗 (ordered pair of vertices) whereas if if
(𝑖, 𝑗) ∈ 𝐸 impies that (𝑗, 𝑖) ∈ 𝐸 then the graph is called undirected. Every
graph 𝐺 = (𝑉,𝐸) (directed or undirected) can be represented by its adjacency
matrix 𝐴. Matrix 𝐴 has size 𝑁 ×𝑁 , where 𝑁 is the number of vertices in
the graph, the rows and columns represent the vertices of the graph and the
entries indicate the existence of edges. We write

𝑎𝑖𝑗 = {
𝑤𝑖𝑗, if (𝑖, 𝑗) ∈ 𝐸, ∀ 𝑖, 𝑗 ∈ 1, . . . ,𝑁
0, otherwise.

In the case of unweighted graphs 𝑤𝑖𝑗 is a binary variable indicating the exis-
tence of an edge between the 𝑖th and 𝑗th vertex and in the case of weighted
network 𝑤𝑖𝑗 is the weight of the edge. If the graph is undirected, the ad-
jacency matrix 𝐴 is symmetric, i.e., it is equal with its transpose 𝐴⊺, for
directed graphs the adjacency matrix is non-symmetric. A graph is called
bipartite if the node set 𝑉 can be partitioned into two disjoint sets 𝑉ℎ and
𝑉𝑎, where 𝑉 = 𝑉ℎ ∪ 𝑉𝑎, such that every edge 𝑒 ∈ 𝐸𝑏 connects a node of 𝑉ℎ to
a node of 𝑉𝑎, i.e., 𝑒 = (𝑖, 𝑗) ∈ 𝐸 ⇒ 𝑖 ∈ 𝑉ℎ and 𝑗 ∈ 𝑉𝑎. In other words, there are
no edges between nodes of the same partition.
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General Network Characteristics

A key concept in a graph is the nodes degree. In an undirected graph, the
degree of any node is the number of the edges that end up on this particular
node. The nodes of a directed graph are associated with an in-degree and
an out-degree. The in-degree of the 𝑖th node, 𝑖 = 1, . . . ,𝑁 , is the number of
incoming edges and the out-degree of the 𝑖th node is the number of outgoing
edges, whereas it is easy to check that in the case of undirected graphs,
the in-degree is equal to the out-degree. The degree matrix is defined as the
diagonal 𝑁 ×𝑁 matrix D, with the degree of each node in the main diagonal.
For directed graphs we can define the in- and out- degrees matrices similarly.

A path in a graph is defined as a collection of nodes with the property
that every consecutive pair of nodes in the sequence is connected by an edge.
Two nodes 𝑖, 𝑗 ∈ 𝑉 are called connected if there is a path from node 𝑖 to node
𝑗. The above definitions can be extended to directed networks, where in a
directed path, a directed edge should exist from each node of the sequence to
the next node.

The distance between two nodes (e.g., metabolites in a metabolic net-
work) is defined as the length of the shortest path between them. As short-
est path we define the minimal number of edges that need to be traversed to
reach node 𝑗 from node 𝑖.

An undirected graph 𝐺 is connected, if for every pair of nodes 𝑖, 𝑗 ∈ 𝑉 a
path exists from node 𝑖 to node 𝑗. A directed graph is strongly connected if
for every pair of nodes 𝑖, 𝑗 ∈ 𝑉 , there is a directed path from 𝑖 to 𝑗 and a
directed path from 𝑗 to 𝑖, whereas 𝐺 is connected if for every pair of nodes
𝑖, 𝑗 ∈ 𝑉 , it contains a directed path from 𝑖 to 𝑗 or from 𝑗 to 𝑖 and, finally,
𝐺 is weakly connected if by replacing the directed edges with undirected a
connected graph is produced.

A connected component in an undirected graph is a maximal subgraph
where every pair of nodes is connected by a path. For directed graphs, the no-
tions of strongly connected component and weakly connected component can
be defined. In the former case, similar to the definition of strong connectivity
that we described earlier, the edge directionality is taken into consideration,
while a weakly connected component requires the existence of a path be-
tween every pair of nodes in the maximal subgraph without considering edge
directionality.

4



Network Centralities

Some of the most common questions arising in any network analysis are about
the importance of each node, the identification of nodes serving as a hub as
well as nodes that play the role of bridges between clusters (communities)
of nodes. Such questions can be addressed by studying different definitions
of network centralities. The simplest centrality measure of each node is the
degree centrality (Bonacich, 1987) which is the degree of the node. A central-
ity measure able to identify important nodes that communicate quickly with
other nodes within a graph is the closeness centrality (Sabidussi, 1966). The
closeness centrality is defined as the inverse of the sum of the distances of the
node from the others. Nodes that are bridges between commmunities can
be found by calculating the betweenness centrality (Freeman, 1977) which is
defined for the 𝑖th node as the total number of shortest paths from node 𝑖 to
node 𝑗 that pass through node 𝑖 divided by the total number of paths from
node 𝑖 to node 𝑗. Finally, we note that there are other centralities focusing on
special characteristics of the graph. For example, the eccentricity centrality
(Hage and Harary, 1995) indicates how much easy or difficult it is to access a
node from any other node in the graph. The eigenvector centrality identifies
nodes which are connected to important nodes and the subgraph centrality
encodes information about the existence of a node in all subgraphs of the
network.

Network models

Here we describe briefly the most popular models that have been utilised in
network analysis in order to understand the topology of an observed network;
whether the observed characteristics of the graph are specific or are following
general graph patterns. In particular, we give details for the Erdos-Renyi,
the Watts-Strogaz and the Barabasi-Albert models. A detailed presentation
of these models as well as of other more specific ones can be found in West
et al. (2001).

The Erdos-Renyi model is the most common model in the network the-
ory and is mainly used to describe the topological characteristics of random
graphs. More precisely, the model assumes that 𝑉 nodes are randomly con-
nected with probability 𝑝 = 2𝐸

𝑉 (𝑉 −1) and that the degrees distribution of the
nodes is binomial; the probability that a node has degree deg is approxi-

mately equal to 𝑒−deg𝑎𝑣𝑔
deg𝑑𝑒𝑔𝑎𝑣𝑔

deg! . A notable property of Erdos-Renyi networks
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is that for number of vertices that tends to infinity (𝑉 → ∞) the degree
distribution shares more and more properties with the Poisson distribution.
Moreover, the Erdos-Renyi networks are homogeneous in the sense that their
vertices of similar degree; small Erdos-Renyi networks are similar to discon-
nected networks and for 𝑝 approximately equal to 1⇑𝑉 the network has a big
subnetwork that is consisted of the majority of the connections appearing in
the whole network.

The Watts-Strogatz model accounts for networks in which any vertex
can be reached from any other vertex by following a small path (in a small
number of steps). Typical examples of networks in biology that exhibit this
characteristic are the metabolic networks which we briefly describe in Section
2.2. The Watts-Strogatz networks are consisted of small communities; have
high clustering coefficient and short average path length.

The Barabasi-Albert model is employed to describe the so-called scale-
free networks; in scale-free networks the degree distribution follows a power
law whereas the number of neighbors of any given node is not standard.
The main characteristic of this type of networks is that evolve overtime and
new edges are appearing randomly. Typical examples of biological networks
that are well-described by the Barabasi-Albert model are the Protein-Protein
networks; see Section 2.2 for more details.

2.2 Networks in biology

This Section presents the three main types of biological networks; namely the
Protein-Protein networks, the Gene networks and the Metabolic networks. A
more detailed presentation of biological networks can be found for example
in Junker and Schreiber (2011).

2.2.1 Protein-Protein networks

A Protein-Protein network, also known as Protein-Protein interaction (PPI)
network, in an organism can be described as the frame of its signal cir-
cuit. The PPIs intervene between the cellular processes and environmental,
genetic signals. In particular, the PPI of an organism describes all the in-
teractions of its cell proteins which in turn control its molecular and cellular
functions. Therefore, understanding protein reductions can en-light the dis-
ease and healthy states of any organism. A PPI encodes all the information
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about the protein-protein interactome of an organism, i.e., the whole set of
its protein-protein interactions.

To populate PPIs there available quite a lot of methods that can detect
protein-protein interactions. These detection methods can be classified in
two classes: experimental methods and computational methods. The experi-
mental methods are either biophysical methods and are based on information
gained from techniques like X-ray crystallography, NMR spectrocsopy and
others or direct or indirect high-throughput methods which are mainly based
on gene co-expression methods. The main drawbacks of the experimental
methods are their cost and the fact that they are time consuming. On the
other hand, the computational methods are based on empirical or theoretical
predictions to infer new protein-protein networks.

By studying the topologiacl properties of the PPI networks it has been
discovered that they are, independently of the organism, scale-free. There-
fore, some hub proteins have a central role in the network by participating in
the vast majority of the interactions whereas any non-hub proteins are part
of a small fraction of the interactions. More information about PPIs and
their detection can be found, for example, in Jones and Thornton (1996).

2.2.2 Gene networks

The genes of an organism produce, through the transcription process, prod-
ucts such the mRNA and proteins which in turn play a key role in important
processes such as cell differentiation, cell survival and metabolism. Thus,
there are two main types of gene networks that are of great biological in-
terest: i) the gene regulatory networks (GNRs) which encode information
about DNA-protein interactions; we describe GNRs in great detail in the
next Chapter and ii) the gene co-expression networks which can be described
as follows.

Before we describe a gene co-expression network it is useful to mention
what is meant by the term gene expression. Gene expression is a biologi-
cal process in which a gene product (usually a protein or RNA) is created
by encoding information from a particular gene. The gene expression pro-
files of multiple individuals (e.g. cancer patients) constitute datasets known
as microarray datasets. The existing information, in a microaaray dataset,
about the co-expression of two different genes is summarized by a gene co-
expression network. More precisely, such a network is an undirected graph in
which the nodes correspond to genes and an edge between two nodes exist if
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there is significant co-expression between the corresponding genes. The gene
co-expression networks are useful in biological applications since by identify-
ing significantly co-expressed genes we reveal information about the pathway
of the protein complex in which these genes belong to and in turn we can
discover the role of the genes in a disease or in a treatment; see for example
Stuart et al. (2003) and references therein for more details and examples on
the role of gene co-expression networks in genetics. Fig

The construction of a gene co-expression network is usually conducted
in two stages. First, a co-expression measure between each pair of genes in
the dataset is calculated. The most common measures are i) the Pearson’s
correlation coefficient of the expression of the genes, ii) the Euclidean distance
between gene expressions, iii) the level of the mutual information and iv) the
Spearman’s rank coefficient. Thus, a similarity matrix between the genes is
constructed. Then, by choosing a significance threshold we set similarities
above this threshold to be equal to one otherwise we set the corresponding
similarity equal to zero. The resulting matrix is the adjacency matrix of
the gene co-expression network; see Figure 2.1 for an example of gene co-
expression network.
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Figure 2.1: An example of a gene co-expression network; image taken from
Zhang et al. (2011).
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2.2.3 Metabolic networks

A metabolic network is consisted of interconnected pathways of biochem-
ical reactions occuring in living cells. The nodes of a metabolic network
are metabolites, i.e. end products of the metabolism in an organism, and
its edges represent their known biochemical transformations. Therefore, a
metabolic network encodes the all the physiological and biochemical proper-
ties of a cell. The metabolic networks are useful in the identification of cormo-
bidity patterns in patients since disease phenotypes depend on the ability of
a cell to breakdown. Thus, studying the complex interdependencies among
a cell’s molecular components can reveal deep functional and causal rela-
tionships between apparently distinct disease phenotypes cooccurring in the
same organism; see for example in Lee et al. (2008) for the role of metabolic
networks in the understanding of disease comorbidity. Figure 2.2 depicts an
example of a human metabolic network.
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Figure 2.2: An example of a metabolic network in a human organism; image
taken from Stuart et al. (2003).
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Chapter 3

Gene Regulatory Networks
(GRNs)

3.1 Overview

A GRN is consisted of the universe of molecular natures and encodes their in-
teractions which in turn represent the function of a cell. In particular, GRNs
describe cell-processes such the metabolism, the gene regulation as well as
transport mechanisms. The nodes in GRN can represent genes, proteins,
metabolites or RNA whereas the edges describe the molecular reactions be-
tween them. GRNs are are models which are typically used by researchers in
order to discover new molecular interactions as well as diagnostic tools; see
for example Liang et al. (2018).

Nowadays, GRNs have become on of the major tools, in the field of com-
putational biology, utilised to understand and model complicated biological
processes. The large development of GRN analysis has been mainly happened
due to the amount of the gene expression information that is extracted in the
very last few years. GRNs are proven to be one of the most efficient tools
in the discovery of new connections between biological entities since quite
a lot of the identified interactions have been confirmed experimentally; see
for example Huang et al. (2018) for more details. The biological processes
in which GRN inference has important contribution in their understanding
range from from development to nutrition and metabolic coordination as well
as in diverge fields including but not limited human health and agronomy
(Levine and Davidson, 2005; Yan et al., 2016; Ogundijo et al., 2016).
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An other aspect of GRN-based inference relies on the reverse engineer-
ing methods where GRN reconstruction is attempted out of experiemental
results. The pipeline which is mainly used for such an analysis is commonly
known as Knowledge Database Discovery (KDD) workflow. In the lines of
KDD GRN reconstruction is going through inputa data pre-processing to the
validation of the generating models. In the present thesis we follow the KDD
workflow in order to show how GRN reconstruction is achieved as well as to
perform related experiments. In the rest of this Chapter we first describe the
biological data used for GRN inference as well as the mathematical models
employed to perform reconstruction of GRNs. A quite large number of review
papers provide details on both of the topics presented in the Chapter; see for
example Delgado and Gómez-Vela (2019) and Zhao et al. (2021) which are
two of the most recent review papers on the topic.

3.2 Mathematical modelling

3.2.1 Biological inputs for GRN inference

The development GRN reconstruction methods is highly connected with the
development of technologies known as high-throughput. In particular, the
rapid and on-going growth of the latter field allows quick advances in GRN
inference as well. A quite recent sequencing tool known as next generation
sequencing (developed by (Buermans and Den Dunnen, 2014)) has turned out
to be the main source of gene expression data for GRN reconstruction; see for
example Monger et al. (2015) and Pataskar and Tiwari (2016) for recent and
detailed discussions. Importantly, by employing next generation sequencing
methods we have available biological information from many different sources
(e.g. multiple omics data) which in turn improve the efficiency of GRN
inference. Figure 3.1 provides a visualisation of the GRN inference pipeline.
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Figure 3.1: A representation of GRN inference: from biological data to net-
work models; image taken from Delgado and Gómez-Vela (2019).

Omics in GRN reconstruction

The gene transcription process is broadly described (see e.g. Larvie et al.
(2016)) as the key step in genes regulation. In particular, the majority of
GRN methods attempt to identify direct or indirect relationships between
transcript levels from omics datasets as well as to use existing biological
knowledge in order to build robust models; describing the true biological
connections as accurately as possible. Here, we describe two of the main
omics datasets: the Genome and the Transcriptome.

The Genome of a biological system can be briefly described as its set of
genes. These collections of genes range from protein-coding genes, which are
the first that have been collected, to micro-RNAs and evolutionary-conserved
regions. The most known nucleotide sequence databases are: the GenBank
(USA), the EMBL (Europe) and the Data Bank of Japan Center (DDBJ); see
in Benson et al. (2012) and Kodama et al. (2015) of their detailed description.
An other source of Genome related data is the field of Epigenetics. For
example, in Ramsey et al. (2018) they employ The Cancer Genome Atlas to
construct a GRN for the identification of transcription factors with significant
role in some cancers.

The term Transcriptome describes the analysis of gene expression pat-
terns in order their relationships to be understood. It is well-known (see e.g.
Lappalainen et al. (2013)) that gene expression levels are mainly governed
by the transcription mechanism. In particular, non-coding RNA is one of the
main genetic factors that drive the gene regulation process. See for example
Parkinson et al. (2005), Clough and Barrett (2016), Kang et al. (2017) for
more detailed discussions and related applications.
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Data collection and pre-processing

The availability of the biological data required for GRN reconstruction relies
on gene expression experiments. The latter are conducted frequently but
the quality and the quantity of the generated data is not the same across the
different experiments. Therefore, the first step is data collection with respect
to GRN reconstruction is usually to build an experimental design. The design
of the gene expression experiments introduces systematic perturbation on the
observed biological system. Some of the most often perturbations include but
are not limited to interventions at the transcriptomic, genetic, proteomic and
metabolomic levels as well as changes in the environmental conditions. Then,
by using a non-perturbated profile resulting from a presumed GRN we can
evaluate the estimated goodness of the model. The effect of the experimental
conditions can be measured either under equilibrium (steady-state) of the
biological system by relying on static data or in a time-course situation where
samples are drawn in a series of time points after perturbation.

The quality and the quantity of the data required for reliable GRN re-
construction depend on the information that we need to extract from the
model. Reliable biological insights can generally provided by employing ex-
perimental data. However, in order to deal with drawbacks of relying on
experimental data, e.g. bad quality and/or unavailability, those data are
combined with external prior knowledge found in databases and in the re-
lated literature. Moreover, the unavailability of experimental data can also
be treated by utilising fuzzy logic techniques to impute any missing data; see
for example Bordon et al. (2015) for more details. Finally, it is important to
note that the quality of the resulting model is not only determined by data
quality but for the inference algorithm itself as well whereas there is also
a clear correspondence between model complexity (dimensionality) and the
amount of data required for an efficient GRN reconstruction.

After specifying an experimental design and understanding the data re-
quirements with respect to the aim of the model data pre-processing is a nec-
essary step for efficient GRN reconstruction. The aim of data pre-processing
is to eliminate the two main sources of variability in GRN recostruction;
systematic errors, referred also as bias in the data, and noise/stochastic ef-
fects. To remove systematic errors we usually perform data normalization
while the data can be de-noised by considering several replicates to obtain
repeated measurements of the variables of interest. Finally, we note that de-
pending on the type (static or time-course) data further data pre-processing

15



is may necessary; see for example Delgado and Gómez-Vela (2019) for more
details.

3.2.2 Main models used for GRN reconstruction

GRN reconstruction relies on models which describe the nature of the regu-
latory dependencies among the biological organisms that belong to the net-
works underneath. In the present Section we describe the main modelling
frameworks employed for GRN reconstruction; ordinal differential equations
(ODE) models; Boolean networks; neural networks; Bayesian networks; in-
formation theory models.

ODE-based modelling

The ODE-based models provide the most accurate description of the gene
expression dynamics by utilizing continuous variables. By denoting with 𝑔𝑗
the expression level of the 𝑗th, among 𝑛 in total genes, gene, 𝑖 = 1, . . . , 𝑛, at
time 𝑡, 𝑡 = 1, . . . , 𝑇 the gene expression dynamics evolve over time according
to the ODE

𝑑𝑔𝑗
𝑑𝑡
= ℎ𝑗(𝑔1, 𝑔2, . . . , 𝑔𝑛, 𝑝, 𝑢),

𝑢 is a variable that accounts for external, environmental, factors, 𝑝 denotes
the parameters of the system and ℎ is functional quantification of rate of
changes of the states of the system. A complete specification of an ODE
system also requires further specifications for the functions ℎ𝑗 as well as
constraints that represent prior knowledge about the system. These spec-
ifications and constraints are necessary for the unique identification of the
structure of the model and its parameters.

The main drawback of ODE-based models with respect GRN reconstruc-
tion is that they struggle to represent the highly complex non-linear dynamics
of the regulatory processes. To that end, more flexible differential equation
models have been developed which take into account the stochasticity of
GRNs; these models are the stochastic differential equation models. More
details about the application of ODE-based models in GRN reconstruction
can be found, for example, in Matsumoto et al. (2017) and references therein.
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Logical modelling

A popular tool for GRN inference is based on logical analysis and in in par-
ticlular on Boolean networks. The Boolean networks are employed for GRN
reconstruction since they can efficiently describe biological characteristics
such as oscillation multi-stationary events, longrange correlations, switch-
like behaviour stability and hysteresis. In a Boolean network each gene is
represented by a variable and its expression level is indicated by a binary vari-
able which classifies silenced or nearly silenced genes (low expression level)
and activated genes (high expression level). Logical operators such as OR,
AND and NOT are utilized to construct Boolean functions 𝐻 which in turn
reconstruct a directed graph 𝒢(𝐺,𝐻) where 𝐺 is a variable associated with
other variables as specified by the function 𝐻. Then, the state 𝑔(𝑡) of the
network at time 𝑡 writes

𝑔(𝑡) = 𝑔𝑗,1(𝑡), 𝑔𝑗,2(𝑡), . . . , 𝑔𝑗,𝑛(𝑡),

for all the nodes of the network, where 𝑗 is referred to the 𝑗th gene.
The drawback of Boolean networks is the binary dicretization employed to

classify activated and silenced genes. More precisely, a gene is rarely fully ac-
tivated or deactivated and, in contrast, can have uncountable different states
between these two extremes. Although the Boolean networks are considered
as the simplest model for GRN reconstruction they are quite useful. See for
example Simak et al. (2019), Claussen et al. (2017), Polak et al. (2017) and
Moignard et al. (2015) for more details and related applications.

Deep learning algorithms

A quite recent direction in the GRN reconstruction field is the employment
of deep learning methods for GRN inference. In particular, the deep learning
algorithms commonly used for GRN reconstruction are the neural networks.
A neural network is typically understood as a batch of algorithms that aims
to identify the underlying relationships in a set of data by mimicking the
way that the human brain operates. Therefore, neural networks refer to
systems of neurons, either organic or artificial in nature. Two are the main
Neural Network models which are usually employed in GRN reconstruction:
the artificial neural network and the recurrent neural networks. The latter,
in particular, allows the modelling of non-linear relationships and dynamic
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interactions across genes. The neural network models have the form

𝑑𝑔𝑗
𝑑𝑡
= 1

𝜎𝑗

(ℎ(
𝑛

∑
𝑖=1

𝛽𝑗𝑖𝑔𝑖 + 𝜈𝑗) − 𝜅𝑗𝑢𝑗),

where 𝛽𝑗𝑖 encodes all the information about the relation of two genes in the
𝑗th and 𝑖th position, 𝜅𝑗 is decay rate parameter, 𝜈𝑗 denotes the basal ex-
pression level and 𝑢𝑗 the gene expression level. The function accounts the
regulatory effect on each gene and the weighted sum appearing within the
function ℎ is interpreted as as the regulatory effect on a particular gene.
Finally, tasks such as evaluation of the outcomes, network performance op-
timization and error minimization are conducted by relying on some scoring
function; see for example Kordmahalleh et al. (2017) for more details. Ap-
plications of neural network models in GRN inference can be found, among
others, in Ling et al. (2013), Tong and Lin (2011) and Larkin et al. (2013).

Models based on directed acyclic graphs

One of the most popular modelling methods for GRN inference is based on the
so-called directed acyclic graphs (DAGs) which are models developed under
the Bayesian paradigm of statistical inference. The advantages of Bayesian
methods in GRN reconstructions is that they combine probability theory
(the Bayes theorem) with graph theory. Bayesian networks are typically
understood as directed and acyclic graphs (DAGs), denoted by 𝒢 = (𝐺,𝐴),
and are accompanied with a set of probability distributions P that model
the joint distribution of the nodes/genes 𝐺 = (𝑔1, . . . , 𝑔𝑛); 𝐴 refers to the
directed rod corresponding to probabilistic dependency interactions between
these genes.

The joint distribution of the nodes (variables) in DAG (Bayesian network)
writes

P(𝑔1, . . . , 𝑔𝑛) =
𝑛

∏
𝑖=1

P(𝑔𝑖⋃︀parents(𝑔𝑖)),

where parents(𝑔𝑖) denotes the set of all the parent nodes/genes regulating the
child node 𝑔𝑖. A smart characteristic of Bayesian networks is the underlying
Markov assumption: given its parents, each node is independent of its non-
descendants. This assumption is convenient both in term of modelling as
well as of computations.

Under the Bayesian networks paradigm and given some data 𝐷 we try to
identify the best DAG that describes the data by assigning to each graph 𝒢
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a score 𝑠(𝒢,𝐷) by employing the Bayes theorem (in the log-scale)

𝑠(𝐺,𝐷) ∝ logP(𝒢⋃︀𝐷) + logP(𝒢),

where ∝ implies that the above relation is true with respect to a proportion-
ality constant. The most common methods for learning a Bayesian network
are consisted of three main steps Larjo et al. (2013): (i) Model selection,
where DAGs are evaluated as candidate graphs of relationships; (ii) Parame-
ter estimation: given graphs and experimental data sets identification of the
best probability model for each node and (iii) Fitness rating: assign a score
to each candidate model such that the higher the score, the better the model
describes data. The latter is the model that represent the GRN learned from
the data.

The main advantages of Bayesian methods and Bayesian networks, in
particular, are (a) their ability to incorporate prior knowledge and (b) the
fact that they can combine different types of data. Applications of Bayesian
networks in GRN inference can be found, for example, in Acerbi et al. (2014),
Chekouo et al. (2015) and Chudasama et al. (2018).

Information based network modelling

The most mathematically oriented models that are popular in GRN inference
are based on the mathematical branch known as information theory. The
information-theory based networks, also known as co-expression networks,
exhibit high computational simplicity and thus are very popular tools in
GRN inference. These types of networks identify relationships between pairs
of genes by examining their dependence level; examining if this dependence
level is above a pre-specified threshold. The dependencies between the genes
are typically measured by using simple statistical measures of correlation;
Pearson, Spearman or Kendall coefficients. More advanced measure based on
Euclidean distances or mutual information, have been also applied for GRN
reconstruction. Popular methods for GRN inference based on information
theory have been developed by Liang et al. (1998), Butte and Kohane (1999),
and Margolin et al. (2006) among others.
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Chapter 4

Machine learning methods for
GRN reconstruction

4.1 Machine learning algorithms

There is a vast variety of network reconstruction algorithms which use spe-
cific assumptions in order to deal with the uncertainty of processing. These
assumptions can have an effect of their prediction accuracy. In the present
Chapter we discuss modern machine learning methods that are commonly
employed for GRN inference. The machine-learning methods typically con-
sider the GRN reconstruction problem as classification or regression problem
based on feature engineering and divide-and-conquer strategy. Then, a re-
lated machine learning algorithm is selected and finally the weights of the
regulatory relationship identified are employed to rank and build the network.
In what follows we describe three of the most common machine learning algo-
rithms used for GRN reconstruction. We also note that the vast majority of
the recently developed algorithm for GRN inference rely in one of the general
methods described in the present Section: random forest, gradient boosting
and support vector machines.

More precisely random forest methods have been applied, among others,
on GRN reconstruction by Huynh-Thu et al. (2010) Petralia et al. (2015),
Huynh-Thu and Geurts (2018) and Saremi and Amirmazlaghani (2021). Gra-
dient boosting methods in GRN inference are currently one of the most popu-
lar techniques. There is a vast amount of the related literature where gradient
boosting methods are employed either in the case of time-series or steady-
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state data. Examples include but are not limited to Slawek and Arodź (2013),
Park et al. (2018), Moerman et al. (2019), Zheng et al. (2019) and Ma et al.
(2020). Notice also that in the latter, recent, applications of gradient boost-
ing in GRN inference the very efficient method of extreme gradient boosting
(XGboost) is employed. Although details for the general gradient boost-
ing can be found in the rest of the present Chapter, the interesting reader
can find more details about XGboost in Chen and Guestrin (2016). Finally,
support vector machines is also very popular machine learning technique in
GRN inference. Early application of the support vector machine method in
GRN reconstruction has been conducted by Ao and Palade (2011) and Yu
et al. (2011) whereas Gillani et al. (2014) offer an early review of support
vector machines in GRN inference. More recent applications of support vec-
tor machines in GRN reconstruction and inference include Ni et al. (2016),
Razaghi-Moghadam and Nikoloski (2020), Chakraborty et al. (2021),Meher
et al. (2021) and Yang et al. (2022).

4.2 Random forest

Random forest is a supervised learning algorithm which relies on an ensemble
of decision trees, usually trained with the general technique of bootstrap
aggregating or bagging. Here, we first describe briefly the building block of
the random forest algorithm which are the decision trees. Then, we explain
how is performed the preliminary step of decision tree learning. Finally, we
give the details of the random forest algorithm which builds multiple decision
trees and merges them together to get a more accurate and stable predictions.

Decision trees

The main building blocks of a random forest (classification or regression)
algorithm are the decision trees. Figure 4.1 illustrates how two decision trees
are built in order to assign scores in the individuals of a datasets based on a
set of available features; age, sex and daily computer usage. From the visual
inspection of the Figure it is clear how a decision tree works. We start by
creating a node with respect to one of the available features and then we
construct a path by separated in two directions by assigning a question tow
the node. Then, in each one of the directions we either create an other node
based on a different feature or we terminate the corresponding branch. More
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generally, a node in a tree can be thought as the point where the path splits
into two — observations that meet the criteria go down the Yes branch and
ones that do not go down the No branch. Finally, Figure 4.1 visualises also
how the scores from the different trees are combined in order the desired
score to be calculated. More precisely, random forests are a way of averaging
multiple deep decision trees, trained on different parts of the same training
set, with the goal of reducing the variance.
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Figure 4.1: An example of two decision trees where two decision trees are
combined in order a score to be assigned each individual of the dataset.

Bagging and random forest

To train a random forest algorithm the technique of bootstrap aggregating
is applied to tree learners. In particular, let 𝑋 = 𝑥1, . . . , 𝑥𝑛 be a training
set with responses 𝑌 = 𝑦1, . . . , 𝑦𝑛. The main idea in bagging is to select 𝐵
times a random sample with replacement of the training set and to fit trees
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to these samples; see Algorithm 1 for a summary of the steps.

Algorithm 1 Bagging.

1: Set the number of replications 𝐵.
2: for 𝑏 = 1, . . . ,𝐵 do
3: Sample, with replacement, 𝑛 examples 𝑋𝑏 and 𝑌𝑏 from 𝑋 and 𝑌 .
4: Train a decision tree 𝑓𝑏 on 𝑋𝑏 and 𝑌𝑏.
5: end for

To perform the 4th step of Algorithm 1 we can apply one of the most
popular techniques of decision tree learning which is based on the concept of
information gain through the notion of entropy1; see for example Wang and
Suen (1984); Li et al. (2019) and references therein for more details.

After applying Algorithm 1 on the training data then based on a new
data point 𝑥

′

a prediction 𝑦
′

can be calculated as

𝑦
′ = 1

𝐵

𝐵

∑
𝑏=1

𝑓𝑏(𝑥
′).

Notice also that an estimate of the uncertainty of the prediction can be made
as the standard deviation of the predictions from all the individual regression
trees on the new feature 𝑥

′

; see for example REF for more details.
Algorithm 1 summarizes the original bagging algorithm for trees. Ran-

dom forests rely on an additional type of bagging. More precisely a modified
tree learning algorithm is employed such taht at each candidate split in the
learning process, a random subset of the features is selected. This process is
usually called “feature bagging”. This procedure deals with the correlation
of the trees in an ordinary bootstrap sample. In particular, if some features
are accurate predictors for the response variable then, these features will be
selected in many of the 𝐵 trees which will be thus highly correlated.

4.3 Gradient boosting

Similarly to the decision forest algorithm presented in the previous Section
the gradient boosting method is employed to conduct regression based GRN

1Entropy is the measure of uncertainty of a random variable, it characterizes the impu-
rity of an arbitrary collection of examples. The higher the entropy more the information
content.
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inference. More precisely, there is a very recent interest in using the GRN
literature to utilize gradient boosting techniques in order to perform GRN
reconstruction; see for example Iglesias-Martinez et al. (2021) for on of the
most recent approaches.

The gradient boosting method invented by Friedman (2001). The main
idea in the gradient boosting method is to combine many “weak” learners
in an accurate learners by performing several iterations. By imaging a liner
regression setting we can describe the gradient boosting method as follows.
In particular, we assume that we wish to learn a function/model 𝐹 in or-
der to obtain predictions 𝑦 = 𝐹 (𝑥) by minimizing the mean squared error
(1⇑𝑛)∑𝑛

𝑖=1(𝑦𝑖 − 𝑦𝑖)2. Then, a gradient boosting algorithm with 𝐵 iterations
works as follows. Let 𝐹𝑏, 𝑏 = 1, . . . ,𝐵 be a “weak” model in the sense that
do no produce accurate enough iterations; for example for small 𝑏 this model
can be use the sample mean of the sample mean of the observations {𝑦𝑖}𝑛𝑖=1
as a prediction 𝑦𝑖 for each 𝑖 = 1, . . . , 𝑛. Then, in the next iteration of the
gradient boost algorithm the model 𝐹𝑏+1 can be an improved version of the
model 𝐹𝑏 by considering a new estimator ℎ𝑚(𝑥). Therefore, we have that

𝐹𝑏+1(𝑥𝑖) = 𝐹𝑏(𝑥𝑖) + ℎ𝑏(𝑥𝑖) = 𝑦𝑖.

The equation above implies that ℎ𝑏(𝑥𝑖) = 𝑦𝑖−𝐹𝑏(𝑥𝑖) and, thus, the parameters
of the model ℎ𝑏(𝑥𝑖) can be learned by fitting ℎ𝑏 to the residuals 𝑦𝑖 − 𝐹𝑏(𝑥𝑖).

More formally, the model ℎ𝑏 can be estimated by considering the loss
function

ℒ = 1

𝑛

𝑛

∑
𝑖=1

(𝑦𝑖 − 𝐹𝑏(𝑥𝑖))2.

By noting the loss function above can be minimized by employing a gradient
descent algorithm the gradient boosting method can be also considered as
an optimisation algorithm where one has only to give as inputs the desired
loss functiona and its gradients. Algorithm 2 summarises the steps of a
general gradient boosting algorithm as presented by Wikipedia (Wikipedia
contributors, 2022).
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Algorithm 2 Gradient boosting.

1: Input: training set {𝑥𝑖, 𝑦𝑖}𝑛𝑖=1; differentiable loss function 𝐿(𝑦,𝐹 (𝑥)),
number of iterations 𝐵.

2: Set 𝐹0(𝑥) = argmin𝛽∑𝑛
𝑖=1𝐿(𝑦𝑖, 𝛽)

3: for 𝑏 = 1, . . . ,𝐵 do
4: Compute the “pseudo-residuals”

𝑟𝑖𝑏 = −⌊︀
𝜕𝐿(𝑦𝑖, 𝐹 (𝑥𝑖))

𝜕𝐹 (𝑥𝑖)
}︀
𝐹 (𝑥)=𝐹𝑏−1(𝑥)

, 𝑖 = 1, . . . , 𝑛

5: Fit a simple model (e.g. decision tree) ℎ𝑏(𝑥𝑖) to the training set
{𝑥𝑖, 𝑟𝑖𝑏}𝑛𝑖=1.

6: Set 𝛽𝑏 = argmin𝛽∑𝑛
𝑖=1𝐿(𝑦𝑖, 𝐹𝑏−1(𝑥𝑖) + 𝛽ℎ𝑏(𝑥𝑖)).

7: Set 𝐹𝑏(𝑥) = 𝐹𝑏−1(𝑥) + 𝛽𝑏ℎ𝑏(𝑥).
8: end for
9: Return 𝐹𝐵(𝑥).

4.4 Support vector machines

The last few years there is a lot of evidence that supervised machine learn-
ing methods outperform unsupervised and semi-supervised approaches for
inference of GRN. This is because the identification of large number of tran-
scription factors and their targets has enabled the availability of sufficient
data to train supervised models; see for example Maetschke et al. (2014) for
a detailed discussion. One of the most popular and efficient machine algo-
rithm employed for supervised learning is the support vector machines (SVM)
developed by Boser et al. (1992). Moreover, there is an increasing interest, in
the literature related to GRN inference, in conducting GRN reconstruction
by using SVM; see for example Ben-Hur and Noble (2005), Mordelet and
Vert (2008), Khojasteh et al. (2021) and references therein for GRN recon-
struction tools built the last 20 years. In the present Section we provide a
brief presentation of the SVM techniques. We also note that there are sev-
eral, public available, software applications which facilitate the employment
of SVM; see Gillani et al. (2014) for software particularly designed to fit SVM
in GRN reconstruction.

The main building block of SVM is a kernel function 𝑘(𝑥𝑖, 𝑥) which con-
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structed to measure the similarity between the gene 𝑥 and 𝑥𝑖. More precisely,
for a dataset consisted of 𝑛 genes a score to new gene 𝑥 can be assigned by
using the function

𝑓(𝑥) =
𝑛

∑
𝑖=1

𝑤𝑖𝑘(𝑥𝑖, 𝑥) +𝐶,

where 𝑤𝑖 are weights to be optimized in a training set and and 𝐶 is the,
so-called, complexity parameter which should be optimized to achieve an
optimal predictive performance while it also controls ant overfitting of the
training set. The aim during the training procedure is to classify the genes
in the dataset in two classes; positive class with large positive scores and
negative class with large negative scores. Finally, we note that there are a
lot of choices for the kernel function 𝑘, Here, we summarize the most popular
ones.

Linear and polynomial kernels

The linear kernel is the simplest kernel in SVM and is given by the formula
𝑘(𝑥, 𝑦) = 𝑥⊺𝑦 + 𝑐. A polynomial kernel is a nonlinear kernel ideal for problem
where all the training set is normalized. Therefore, the polynomial kernel
is ccommonly employed in the case of microarray where the corresponding
data are normalized by different normalization techniques before generating
expression matrix. A polynomial kernel is defined by the formula 𝑘(𝑥, 𝑦) =
(𝑎𝑥⊺𝑦+𝑐)𝑑. Notice that the polynomial kernel has two additional parameters
compared to the linear one, 𝑑 denotes the degree of freedom (also known as
order of polynomial) and a slope of alpha.

Gaussian and sigmoid kernels

The radial basis function is also known as a Gaussian kernel in the literature
of SVM. This is a non-linear kernel given by

𝑘(𝑥, 𝑦) = exp{−𝜅⋃︀⋃︀𝑥 − 𝑦⋃︀⋃︀2},

where ⋃︀⋃︀ ⋅ ⋃︀⋃︀ denotes a distance between the vectors which is usually chosen to
be the Euclidean and 𝜅 is a parameters that controls the non-linearity of the
kernel; if it is overestimated, it will behave almost as a linear kernel. The
sigmoid (hyperbolic tangent) kernel is also known as multilayer perception
kernel and is originated from the field of neural networks. It is given by the
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formula
𝑘(𝑥, 𝑦) = tanh(𝑎𝑥⊺𝑦 + 𝑐),

where 𝑎 and 𝑐 are slope and intercept parameters respectively.
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Chapter 5

Recent GRN methods

The aim of the present Chapter is to describe ongoing research on GRN re-
construction and inference. The main venues of current research in GRN
reconstruction and inference are the following. A vast amount of recent re-
search has been dedicated to evolutionary changes in GRN since it is nowa-
days well-recognized that regulatory changes play a major role in evolution of
several species. The other modern direction of research in the field of GRNs
that we discuss in the present Chapter is the update of the resources for GRN
reconstruction and inference, i.e., the use of single-cell RNA sequencing in
order to obtain gene expression data and overcome, thus, the shortcomings
of conventional transcriptome sequencing technologies. Finally, at the end of
the Chapter we discuss current challenges in the field of GRN inference.

5.1 GRN evolution

As early as in King and Wilson (1975) has been recognized that regulatory
changes play a major role in evolution of species. More precisely, King and
Wilson (1975) reached this conclusion by studying human-chimpanzee pro-
teome similarities. This conclusion has been strengthen by further biological
analysis; see for example Davidson (2010) for detailed discussion. In partic-
ular, it is now well-known that only a small number of genes shape the body
plan of animals and these genes are parts of larger GRNs. Therefore, in order
to understand evolution we need to study how GRNs evolve at the molec-
ular scale. This requires well-constructed GRNs in more than one species.
Moreover, the species under study have to be enough diverged enough such
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that there are genotypic and phenotypic differences but not so much diverged
that regulatory modules cannot be identified.

Recently, Mehta et al. (2021) developed a novel computational pipeline
in order to study the GRN evolution associated with phenotypic effect across
ecologically diverse, vertebrate, species. Moreover, even more recently, Feigin
et al. (2022) discuss how experiments and projects can be designed in order
the GRN reconstruction and inference to play a prominent role in evolution-
ary biology.

5.2 GRN inference based on single-cell data

One of the latest contributions of GRNs in the biological understanding of
living organisms is their utility in the employment of single-cell RNA-seq data
for their construction. More precisely, the very recent years there is a large
amount of research dedicated to employ single-cell RNA-seq snapshot data
for the inference of the underlying GRNs. This approach is based on the fact
that single-cell RNA sequencing captures the gene expression levels for a huge
amount of individual cells in one experiment. Thus, the experimental design
can be facilitated whereas large numbers of independent measurements, and
accessing the interaction between the cell cycle and environmental responses
that is hidden by population-level analysis of gene expression is also much
easier.

The described approach of GRN reconstruction based on single-cell RNA-
seq data relies mainly on moder machine learning methods. Here we present
a small overview of the main methods used to conduct GRN inference based
on single-cell RNA-seq data; see for example Pratapa et al. (2020) for a re-
cent review of state-of-the-art algorithms employed in the recent literature
to inferring GRNs from single-cell transcriptional data. Here we briefly de-
scribed the most popular machine learning algorithms developed in the last
decade to conduct GRN inference based on single-cell RNA-seq data.

5.2.1 Description of recent GRN inference based on
single cell RNA-seq data

One of the first and well-known machine learning algorithms is the so-called
GENIE3 method developed by Huynh-Thu et al. (2010). The GENIE3 al-
gorithm constructs the regulatory network for each gene independently by
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employing tree-based ensemble methods in order to predict the expression
level of each target gene from the expressions of all the other genes. The al-
gorithm relies on the random forests methods described in Chapter 4.1. The
importance of an input gene in the predictor for a target expression pattern
determines the weight of the corresponding interaction. All these weighted
interactions summed over all the genes consist of the regulatory network.

The second method that we describe here has been developed and im-
plemented as an R-package (R Core Team, 2021) by Kim (2015); this is the
r-package PPCOR. This package calculates for each pair of genes their the par-
tial and semi-partial correlation with respect to the rest genes; a p-value for
each correlation is also offered in the output of the package. This technique
implies an undirected GRN in which the sign of the correlation, bounded
between 1 and 1, can be used in order to signify whether an interaction is
negative or positive.

The next method for GRN recosntruction based on single-cell transcrip-
tional data that we describe has been become known as pidc and is based
on information theory. The pidc technique partitions the pairwise mutual
information between each pair of genes into a redundant and a unique com-
ponent. Then, calculates the ratio between the unique component and the
mutual information. The sum of this ratio over all other genes is the propor-
tional unique contribution between the given pair of gene. This method has
been developed by Chan et al. (2017).

A very popular method for GRN inference relying on single-cell RNA-
seq data has been developed by Matsumoto et al. (2017) under the label
SCODE. This particular techniques utilized linear ordinal differential equations
in order to represent the transformation of a regulatory network in observed
gene expression levels. The method relies on a specific relational expression
estimated by employing simple linear regression. By combining the linear
regression technique with a dimension reduction approach, SCODE results in a
considerable reduction of the complexity of the constructed machine learning
algorithm.

The technique LEAP developed by Specht and Li (2017) is also GRN re-
cosntrction algorithm. The method is initialized with pseudotime-ordered
data and then computes the Pearson’s correlation of normalized mapped-
read counts over temporal windows of a fixed size with different lags. Subse-
quently a maximum score for a pair of genes is stored the maximum Pearson’s
correlation over all the values of lag that the method considers. Finally, a
permutation test is employed to estimate false discovery rates.
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More recently than the described above methods the SINCERETIES algo-
rithm developed by Papili Gao et al. (2018). The SINCERETIES algorithm is
based on time-stamped transcriptional data in order to account for tempo-
ral changes the expression f each gene through the distance of the marginal
distributions between two consecutive time points by employing the Kol-
mogorov–Smirnov statistical function. Regulatory connections for the target
genes is achieved by relying on he Granger causality. More precisely, the
SINCERETIES algorithm utilises the changes in the gene expression in a given
time stamp in order to predict how the expression distributions of target
genes shift in the next period of time. GRN inference is formulated as a
ridge regression problem and partial correlation anaslysis determins the signs
of the edges.

One more method that takes single-cell gene expression data over time
course as input is the so-called SCNS algorithm constructed by Woodhouse
et al. (2018). The developed algorithm calculates logical rules that inform
the progression and transformation of initial cell states to later cell states.
The resulting Boolean model is very useful for the prediction of the effect of
gene perturbations on specific lineages.

A Bayesian method for GRN reconstruction by using single-cell RNA-seq
data has been contributed by Sanchez-Castillo et al. (2018). This algorithm
is known in the related literature with the name GRNVBEM and employs a first-
order autoregressive model in order to estimate the fold change of a gene at a
specific time. More precisely, under this approach this is expressed as a linear
combination of the expression of the regulators of the gene in the a Bayesian
directed acyclic graph at the previous time point. GRNVBEM constructed the
underlying GRN relying on variational inference techniques; see for example
Titsias (2009) for more details on Bayesian variational inference methods.

Recently, Deshpande et al. (2022) observed that although the majority
GRN algorithms kick off by canclulationg a pseudotime value for each cell,
the distribution of cells along the underlying dynamical process may not be
uniform. Therefore, Deshpande et al. (2022) developed SINGE which utilises
kernel-based Granger causality regression to alleviate irregularities in pseu-
dotime values. More precisely, the developed technique conduct multiple
regressions, one for each set of input parameters, and aggregates the result-
ing predictions using a variant of the Borda method.

To summarize, we need to mention that the majority of the algorithms
and techniques described above are useful for single-cell transcriptomic data
with cells ordered by pseudotime in the input. The described algorithms
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ideally require datasets corresponding to linear trajectories. However, some
of the techniques suggest that data with branched trajectories can be split
into multiple linear ones before input whereas theie majority construct finally
a directed graph.
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Chapter 6

GRN inference based on
simulated data

In the present Chapter we show how a simulation study that highlights the
benefits of utilizing modern machine learning methods in GRN reconstruction
can be performed by using recently developed software tools. More precisely,
the assessment of a GRN reconstruction method requires two ingredients.
These are the graph structure of a GRN and gene expression data generated
from that particular graph.

The network/graph structure of GRN can be obtained from already stud-
ied, well-known, interactions; typical examples include but are not limited
to E. Coli (Santos-Zavaleta et al., 2019) and S. cerevisiae (MacIsaac et al.,
2006). These type of data can be extracted from databases such as the, man-
ually created, RegulonDB (Gama-Castro et al., 2016). On the other, hand
gene expression data can be found in databases such as the Gene Expression
Omnibus database (Clough and Barrett, 2016).

However, both the network structure of a GRN as well as gene expression
data can be simulated. Here, we focus on probabilistic-based simulators.
Simulation of gene expression data very often relies on a Gaussian models; see
for example Danaher et al. (2014); Ha et al. (2015); Zhang et al. (2017) and
Xu et al. (2018). Additional to Gaussian models raw RNA-seq count data are
also simulated by using discrete probability models; examples here include
Angly et al. (2012); Frazee et al. (2015) and Benidt and Nettleton (2015).
Finally, the simulation of graphs which exhibit characteristics of network
structure of a GRN has also gained the reference of the related literature.
More precisely, recently the R-package (R Core Team, 2021) SeqNet (Grimes
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and Datta, 2021) constructs simulated networks with topology similar to real
transcription networks.

In this Chapter we first discuss the employment of the R-package SeqNet
in order to simulated both a network that exhibits topological characteristics
similar to those of graphs of GRNs as well as to generated gene expression
data according to the simulated network. Then, we show how a gradient-
boosting decision tree (see e.g. Ke et al. (2017)) can be applied in order to
perform GRN inference ad test how efficiently we reconstruct the simulated
transcription network based on the corresponding gene expression data.

6.1 Simulation of the network structure

The network structure of a GRN can be represented by an undirectred graph
in which each node corresponds to gene and an edge between two nodes exists
if there is an association between the corresponding genes. The methods
employed by the SeqNet package are based on representing the global network
as a collection of overlapping modules which in turn represent regulatory
pathways, i.e., set of interacting genes that regulate the production of mRNA
and proteins.

The algorithm used by the SeqNet package to generate the network struc-
ture of a GRN works as follows. A global network 𝒢 = (𝐺,{𝑀 (𝑖)}𝜈𝑗=1), where
𝐺 = {1, . . . , 𝑝} denotes the set of 𝑝 genes and 𝑀 (𝑗) = (𝑃 (𝑗),𝐴(𝑗)) is the 𝑖th
module containing a subset 𝑃 (𝑖) ⊂ 𝐺 of genes and 𝐴(𝑖) is the adjacency ma-
trix of the local network structure, is generated by iterating three steps: (i)
generate randomly a module size, (ii) sample a set genes to construct the
module, and (iii) generate the local adjacency matrix for the module. The
steps (i)-(iii) are repeated such all the 𝑝 genes have been utilized. In the
following pragraph we discuss steps (i)-(iii) in more detail.

6.1.1 Details on network simulation

The first step in the procedure described above for the simulation of the
network structure requires the generation of a random module size. This
random size can be generated by a negative binomial (NB) distribution as
follows. Let 𝑛𝑚𝑖𝑛 a pre-specified minimum size for the module then we draw
an integer 𝑛 ∼ 𝑁𝐵(𝑛𝑚𝑜𝑑−𝑛𝑚𝑖𝑛, 𝜂), where 𝑛𝑚𝑜𝑑 denotes an average size of the
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module and 𝜂 is a variance parameter. Then, the module size is set to be
𝑛 + 𝑛𝑚𝑖𝑛; both 𝑛𝑚𝑜𝑑 and 𝜂 are user specified.

In the second step of the network simulation algorithm discussed in the
previous Section a set of genes is sampled in order to consist the module
basis. Before describing the sampling procedure that is followed for the
selection genes for each module we need to note the following. The aim of
the designed procedure is twofold: First, the generated modules might have
a non-empty intersection, i.e., they may be overlapping which implies that
the same genes may be drawn multiple times. Second, in order to ensure
that the global network is a single giant component that mimics the real
transcription networks (see e.g. Dobrin et al. (2004)) we need to sample set
of genes such that every new module is connected to at least one existing
module. More precisely, to perform the sampling of the genes we have to
work as follows. To generate the first module a subset of genes 𝑃 (𝑗) ⊂ 𝐺 is
drawn, after simulating a random module size as described in the previous
paragraph, with equality probability 1⇑𝑝 for each gene in the set 𝐺 which
consisted of the indices of the 𝑝 genes. Then, each additional module we
work as follows. First, the random module size 𝑛 is generated, then a node
that links the current module with the previous ones is drawn randomly
with probability that depends on the connectivity of each gene. Finally, the
remaining 𝑛 − 1 genes are drawn randomly with probability given to genes
that already belong to a module.

The final, third step, of the procedure of network simulation generate the
local adjacency matrix for each module. The generation of local netwrok
structure for each module by the SeqNet package is based on the extremely
popular Watts-Strogatz algorithm Watts and Strogatz (1998) which in turn
relies of the well-known Barabasi-Albert model (Barabási and Albert, 1999).
More precisely, the Watts-Strogatz algorithm proceeds as follows. The algo-
rithm is initialized by network of p nodes in a ring lattice, with each node
having initial degree 2𝜔 and a probability 𝜋 for edges to be rewired to a new
neighbor. The case 𝜋 = 0 maintains the ring lattice structure, the case 𝜋 = 1
results in a random graph whereas for 0 < 𝜋 < 1 a small-world, not scale-free,
is constructed. In particular, the SeqNet package simulates networks with
a diverge range of topological structures beyond the scale-free one which al-
though a common assumption is the analysis of gene expression data; see for
example the seminal paper by Zhang and Horvath (2005) as well as Stumpf
and Ingram (2005) and Parsana et al. (2019) for detailed discussions.
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6.2 The network model

Notice that the simulated graph that represents the network structure of a
GRN as described in Section 6.1 is an unweighted graph. In order to assign
weights to each edge of the simulated network the algorithm constructed in
the SeqNet package proceeds as follows. The process of adding weights is
performed at the module level because the network is composed of individual
modules and each one of them haa a local network structure. As already
noted in the previous Section the existence of edges in each module represents
the associations between the corresponding genes. In the SeqNet package the
genes associations are modeled in conditional dependence basis. Therefore,
a nonzero gene-gene association implies that the expression of two genes are
conditionally dependent given the other genes in the module. Moreover, the
non-existence between two genes (nodes) implies a zero association between
them in the module’s graph which in turn means that these two genes are
conditionally independent. The described model for the genes associations
can be formulated as probabilistic model based on the multivariate Gaussian
distribution. Then, the described association model is widely known as a
Gaussian graphical model (see e.g. Yin and Li (2011)) and the expression of
𝑝 genes of the same module have the joint probability density function

P(𝑍 = 𝑧) = 2𝜋−𝑝⇑2det(𝐾)1⇑2 exp{−(𝑧 −𝑚)⊺𝐾(𝑧 −𝑚)⇑2},

where𝑚 is the mean 𝑝-dimensional vector and𝐾 is a 𝑝×𝑝 positive definite ma-
trix called the precision matrix which is the inverse of the covariance matrix
usually employed to parametrize the normal distribution. The off-diagonal
elements in 𝐾 determine the conditional dependencies among genes. By
noting that conditional dependence defines association in the described net-
work model, this means that each gene-gene association can be represented
through nonzero entries in 𝐾. In the SeqNet package there are efficient rou-
tines to generate a precision matrix and thus the association structure of the
graph.

6.3 Simulation of RNA-seq data

As already discussed in the beginning of the Chapter the SeqNet package
is consisted of three main components: he network generator, the Gaussian
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graphical model (GGM), and a converter from GGM values to RNA-seq ex-
pression data. In the previous Sections we described the first two components
and here we describe the third one. In particular, in the present Section we
discuss how the r-package SeqNet converges data generated from a GGM, as
disccused in the previous Sections, to gene expression data. The generated
expression data should fulfill two aims: (i) their dependence structure have
to reflect the global network structure and (ii) the marginal distribution of
each gene’s expressions needs to be close enough to the reference RNA-seq
data. Therefore, the procedure followed by the SeqNet package is developed
in two parts: a) initial data are generated and aggregated together from the
local GGMs defined in each module and b) the Gaussian values are trans-
formed into RNA-seq data by sampling from the empirical distribution of
the reference dataset. In what follows we describe algorithmically how these
two parts are implemented by the SeqNet r-package.

• Inputs: A weighted graph 𝒢 = (𝐺,{𝑀 (𝑗)}𝜈𝑗=1); a dataset 𝑌 ∈ R𝑞 × R𝑞

used a reference and consisted of 𝑞 genes from 𝑛̃ samples; the desired
sample size 𝑛.

• Output: A matrix 𝑋 ∈ R𝑛×𝑝 with the simulated RNA-seq expression
data as generated from the given network.

(i) Draw 𝑝 columns from the dataset 𝑌 where 𝑝 is the number of nodes in
𝒢.

(ii) Set 𝑖 = 1 and initialize a matrix 𝑋 with 𝑛 rows and 𝑝 columns.

(iii) Draw Gaussian random variable 𝑋̃ ∈ R𝑝 from 𝒢.

(iv) Transform the Gaussian random values to 𝑋𝑖 = 𝐹𝑖(Φ(𝑋̃𝑖)), where 𝐹𝑖 is
the emprical cumulative distribution function (cdf) of 𝑌𝑖 and Φ denotes
the standard Gaussian cdf.

(v) Store the generated variables 𝑋1, . . . ,𝑋𝑝 in the 𝑖th row of 𝑋.

(vi) Repeat steps 3-5 for 𝑖 = 1, . . . , 𝑛.

Notice also that the procedure above can be implemented straightforwardly in
several statistical software such as Python (vanRossum, 1995) and MATLAB
(Higham and Higham, 2016).
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6.4 GRN inference

In the previous Sections of the present Chapter we showed how statistical
software can be utilised in order gene expression data from a given GRN
structure can be simulated. In particular, we discussed how the r-package
SeqNet can be used to perform such a simulation exercise. By noting that the
simulated gene expression data are useful in order to test different (machine
learning) methods with respect to GRN inference we describe, in the present
Section, methods in order to conduct the final step that is required in such an
analysis. This is to build the a GRN based on the simulated gene expression
data and to compare the inferred GRN structure with the one we used to
simulate the gene expression levels.

More precisely, we discuss how the recently developed, by Chen et al.
(2021), r-package called Gene Network Estimation Tool (GNET) can be em-
ployed in order to construct GRNs from gene expression data. In particular,
the methods employed by GNET rely on a probabilistic graphical model
in order to conduct the GRN reconstruction. The GNET package include
routines for data pre-processing, model development as well as visualization
modules. We also note that the package summarizes and unifies previous
work conducted by Zhu et al. (2012) and Zhu et al. (2013). In what fol-
lows we describe the inputs and outputs of the GNET package while we also
briefly present the methodolgy in which the package is based on.

The r-package GNET is a module-based network method for GRN recon-
struction and previous versions of the package have already been employed
to infer theregulatory interactions among genes involved in several biologi-
cal processes such as inference about regulations of estrogenes (Gong et al.,
2014); see also Zhu et al. (2012) for more applications of the package.

The GNET tool employs techniques such as gradient boosting-based mod-
ule initialization as well as visualization of experiment conditions in order to
increase its functionality for the end user. The package treats a gene regula-
tory module as a two component object consisted of a regulatory tree (i.e. a
binary decision tree) built from the gene expression profiles and a set of target
genes regulated by the tree. Each node of the regulatory, binary, tree repre-
sents a regulator which is a transcription factor. Then, different branches of
the binary tree are loaded with different samples from the input data based
on the expression levels of the regulators in the tree nodes; the target genes
within the same leaf node are assumed to share similar regulatory patterns.

In the initial step of the GNET package all genes except the regulators
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are clustered into groups; the number of clusters that are used for this step
is user-defined. Then, a gradient-boosting decision tree is employed in order
the different genes to be assigned to different initial clusters. Subsequently,
an iterative regulatory tree-inference and gene re-assignment are conducted
in order to develop the regulatory tree and update the target genes for each
regulatory module. Finally, by using the GNET tools scores are assigned
to the output modules in order the user to be able to identify biologically
meaningful modules. These scores rely either on the similarity of genes in
the same regulatory path or on the coherence between leaf nodes and user-
defined labels of samples. Figure 6.1 illustrates the output of the GNET
package after its application on the Arabidopsis RNA-Seq data.
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Figure 6.1: Visual output from the GNET package. (a) A regulator module
generated from the Arabidopsis dataset. Top: Color bars indicating the
separation of the samples according to the expression levels of the regulators.
Middle: Heatmap which highlights the expression pattern for the target genes
in the module. Bottom: Colar bar that visualizes the groups of samples that
are in common leaf node of the tree. (b) The regulatory tree shown in (a);
units of numbers in the log-scale. The figure is taken from Chen et al. (2021).
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Chapter 7

Conclusions and Discussion

The focus of the present thesis was the role scientific fields such as network
theory and machine learning estimation methods in the analysis of biological
data. More precisely, we were interested in GRN reconstruction methods.
Methods for the reconstruction of GRNs have received an increasing interest
in the recent related literature mainly for two reasons:

(i) GRNs provide valuable infromation about pairwise interactions be-
tween biological entities. Therefore, they have been proven to be
very successful in fields as human health and agronomy (Delgado and
Gómez-Vela, 2019; Zhao et al., 2021) were, for example, can facilitate
the understanding of the impact of complex diseases in cell functions
as well as the development of biotechnological applications.

(ii) The recent years there is an explosion in the generation of genetic
information through gene expression data. The large amount of the
corresponding datasets has created the need for development of really
efficient algorithms which are able to reconstruct GRNs utilising all the
available information.

In the present thesis we first described the main and necessary tools from
graph theory which are employed in the represantation and understanding of
biological and/or molecular entities as networks. The, we briefly described
the most common biological networks while we gave a detailed description
of the GRNs. In particular, we presented data and pre-processing methods
as well as the usual mathematical models employed in GRN reconstruction.
Finally, we focused on the most recent machine learning methods for GRN
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reconstruction and we presented the pseudo-code that underpins their im-
plementation.
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Hernández, L. J. Muñiz-Rascado, P. Peña-Loredo, et al. (2019). Regulondb
v 10.5: tackling challenges to unify classic and high throughput knowledge
of gene regulation in e. coli k-12. Nucleic acids research 47 (D1), D212–
D220.

Saremi, M. and M. Amirmazlaghani (2021). Reconstruction of gene reg-
ulatory networks using multiple datasets. IEEE/ACM Transactions on
Computational Biology and Bioinformatics .

Simak, M., H. H.-S. Lu, and J.-M. Yang (2019). Boolean function network
analysis of time course liver transcriptome data to reveal novel circadian
transcriptional regulators in mammals. Journal of the Chinese Medical
Association 82 (11), 872–880.
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Υπέθυνη Δήλωση Συγγραφεά:  

Δηλώνω ρητά ότι, σύμφωνα με το άρθρο 8 του Ν. 1599/1986 και τα άρθρα 2,4,6 παρ. 3 του Ν. 1256/1982, η 
παρούσα εργασία αποτελεί αποκλειστικά προϊόν προσωπικής εργασίας και δεν προσβάλλει κάθε μορφής 
πνευματικά δικαιώματα τρίτων και δεν είναι προϊόν μερικής ή ολικής αντιγραφής, οι πηγές δε που 
χρησιμοποιήθηκαν περιορίζονται στις βιβλιογραφικές αναφορές και μόνον. 
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