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Abstract 

One of the most important factors for economic and social development is energy 

availability, since different forms of energy are used for manufacturing, transportation, 

electricity generation and heating. In academic literature, electricity is cited as the form of 

energy that has penetrated the most in almost all aspects of modern life, being essential non 

only for commercial uses but also for residential uses. During the last couple of years, the 

significant supply chains disruptions in the international energy markets of crude oil and 

natural gas, caused by the Russia-Ukraine military conflict, created significant variations in 

the electricity markets and ignited the interest for examining the security of the electricity 

grids. An essential part of the academic research focuses on research about electricity load 

demand and forecasting of electricity load as it enables the design of immediate and efficient 

responses in demand variation. Increasing electricity demand requires the availability of raw 

energy sources as well as the good operation of the electricity grid, while period of low 

electricity demand should be matched with decreasing electricity production for reducing 

production costs. The majority of existing models for electricity modeling and forecasting 

in literature are characterized by increasing complexity making their use from policy makers 

and market experts difficult. The purpose of this postgraduate thesis is to examine the 

statistical behavior of the suggested electricity load models, examine their out of sample 

forecasting capabilities and performance. The models that will be examined in this 

dissertation are estimated using hourly observations for electricity load, day-ahead price and 

temperature in Spain during 2019. Postestimation assessment and comparison of the 

examined models will be conducted with the use of forecasting accuracy metrics. 

Keywords: Electricity load modeling, forecasting, regression models, time series analysis.   
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“Ανάλυση Χρονοσειρών Ζήτησης Ηλεκτρικής Ενέργειας” 

 

Γεράσιμος Μινέτος 

 

Περίληψη 

Ένας από τους σημαντικότερους παράγοντες για την οικονομική και κοινωνική ανάπτυξη 

ενός κράτους είναι η διαθεσιμότητα ενέργειας καθώς διαφορετικές μορφές ενέργειας είναι 

απαραίτητες στην βιομηχανία, τις μεταφορές, την παραγωγή ηλεκτρικής ενέργειας καθώς 

και για την θέρμανση. Στην ακαδημαϊκή βιβλιογραφία, η ηλεκτρική ενέργεια αναφέρεται 

ως η μορφή ενέργειας που έχει διεισδύσει περισσότερο σε σχεδόν όλους τους τομείς της 

καθημερινότητας, και είναι απαραίτητη όχι μόνο για την χρήση της από την βιομηχανία 

αλλά και για τις καθημερινές ανάγκες των νοικοκυριών. Τα τελευταία δύο χρόνια, οι 

σημαντικές διαταραχές στις εφοδιαστικές αλυσίδες ενέργειας στις αγορές αργού 

πετρελαίου και φυσικού αερίου που προκλήθηκαν από την στρατιωτική σύγκρουση μεταξύ 

Ρωσίας και Ουκρανίας, δημιούργησαν σημαντικές διακυμάνσεις στην αγορά ηλεκτρικής 

ενέργειας και αναθέρμαναν τον ενδιαφέρον για την έρευνα της διασφάλισης της 

σταθερότητας στην λειτουργία του δικτύου ηλεκτρικής ενέργειας. Ένα μεγάλο μέρος της 

ακαδημαϊκής έρευνας επικεντρώνεται στην μελέτη της ζήτησης για ηλεκτρική ενέργεια και 

την πρόβλεψη της μελλοντικής της κατανάλωσης προκειμένου να διασφαλιστεί η κάλυψη 

της μεταβολής της μέσω του σχεδιασμού αποτελεσματικών ενεργειακών πολιτικών. Η 

αύξηση της ζήτησης για ηλεκτρική ενέργεια απαιτεί την διαθεσιμότητα των πρώτων πηγών 

ενέργειας που χρησιμοποιούνται στην παραγωγής της, καθώς και την εύρυθμη λειτουργία 

του δικτύου διανομής ηλεκτρικής ενέργειας. Μία περίοδος με χαμηλή ζήτηση ηλεκτρικής 

ενέργειας θα πρέπει να συνδυαστεί με μείωση της παραγωγής ηλεκτρικής ενέργειας 

προκειμένου  να μειωθεί το κόστος λειτουργίας των σταθμών παραγωγής ενώ μια περίοδος 

υψηλής ζήτησης πρέπει να συνοδεύεται με αύξηση της προσφοράς.   Η πλειονότητας των 

μοντέλων που συναντάμε στην βιβλιογραφία για την εξέταση της συμπεριφοράς αλλά και 

την πρόβλεψη της ζήτησης για ηλεκτρική ενέργεια χαρακτηρίζεται από μοντέλα αυξημένης 

πολυπλοκότητας, καθιστώντας δύσκολη την χρησιμοποίηση τους από τις ρυθμιστικές αρχές 

καθώς και τους συμμετέχοντες στην αγορά.  Σκοπός της παρούσας μεταπτυχιακής διατριβής 
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είναι η εξέταση της στατιστικής συμπεριφοράς των προτεινόμενων από την βιβλιογραφία 

μοντέλων ζήτησης ηλεκτρικής ενέργειας καθώς και η εξέταση της ικανότητας των 

μοντέλων αυτών να εξάγουν προβλέψεις για την μελλοντική ζήτηση από το δείγμα των 

παρατηρήσεων. Οι μεταβλητές των μοντέλων που θα χρησιμοποιηθούν στην παρούσα 

μεταπτυχιακή εργασία θα εκτιμηθούν με την χρήση ωριαίων δεδομένων κατανάλωσης 

ηλεκτρικής ενέργειας, τιμής day-ahead και θερμοκρασίας για την Ισπανία κατά την 

διάρκεια του έτους 2019. Τα εξεταζόμενα μοντέλα ζήτησης ηλεκτρικής ενέργειας θα 

συγκριθούν μεταξύ τους με την χρήση δεικτών ακρίβειας πρόβλεψης (forecasting accuracy 

metrics). 

 

Λέξεις – Κλειδιά  

Μοντέλα ζήτησης ηλεκτρικής ενέργειας, θεωρεία προβλέψεων, μοντέλα παλινδρόμησης, 

ανάλυση χρονοσειρών. 
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1. Introduction 

Modern developed and developing economies and societies are relying heavily in energy 

consumption for the majority of production activities and almost for every daily living 

activity. The most common energy form that is used in production of several commodities 

as well as for common residential purposes such as cooking, lighting and heating; is 

electricity.  As the global population is expected to continue the increasing trend during the 

next years; the demand and use of electricity is also expected to follow a similar increasing 

trend.   

 

Electricity is distinguished from the other forms of energy in the sense that is derived by 

other primary sources of energy such as coal, natural gas, nuclear, geothermal, hydropower, 

photovoltaics, and wind turbines. The two unique characteristics of electricity are that it is 

a just-in-time form of energy (since there is no delay between electricity generation in the 

production facilities and electricity consumption by the final consumer), and that electricity 

with the existing technology cannot be stored in significant quantities for future use (no 

ability for inventory building).  Traditionally electricity is generated in production 

generation facilities where primary energy sources such as carbon, natural gas, and nuclear 

energy are burned to create heat that in turn is used for heating water. The heated water in 

turn produces high pressured steam that moves the blades of a turbine, and consequently 

generates electricity.  

 

Electricity eventually is supplied into the electricity grid and is distributed to the final 

consumer. The greatest share of electricity generation nowadays is derived by energy 

sources that are exhausting (coal, natural gas, uranium) and their use has significant 

environmental consequences. As the power stations are using primary energy sources as 

fuel for the electricity generation turbines and there is time needed for powering up 

additional turbines, the management of electricity demand and supply is crucial for 

decreasing operational and environmental costs (Sadler, 2022). Electricity power stations 

are usually located far from the final consumer since they usually located near the primary 

sources of energy. From the production facilities to the final consumer, electricity is 

transmitted and distributed through the electricity grid of a country. The electricity grid is 

the interconnected system of operating and back up electricity generation plants, electricity 
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transmission substations, transmission lines able to transfer high voltage electricity, local 

electricity substations that are transforming high voltage electricity to lower for being able 

to be used by the final customers through distribution lines. In addition, there are several 

smaller electricity grids or micro-grids that are connected in the national electricity grid such 

as regional grids, community grids, university campus grids or even industrial area grids 

(Sadler, 2022).  

 

Each final user in the electricity system removes electrical power for operating business or 

residential machines. This electricity removed from the grid is called electricity load or 

electricity demand. The electricity demand has significant variations during a day or a week 

or even a whole year since there are different factors affecting the final consumer on using 

electrical devices. Electricity generation facilities are feeding the system with always with 

a minimum level of electricity, the base load, while they implement additional resources for 

facing periods of increased demand (high peak load). Nowadays, the electricity generation 

facilities are large investment projects since they use natural gas and nuclear power as a 

fuel, providing the base load electricity in the grid while there are several back-up electricity 

generation facilities that operate during peak times. The back-up generation plants require 

significant resources for powering up and starting generating electricity, adding significant 

cost in the additional high peak load. The optimal operation of the electricity grid requires 

taking decisions about the efficient allocation of energy resources and reducing electricity 

generation costs. Important role in decision making in electricity generation and distribution 

plays the understanding and forecasting the electricity load. Knowing the periods of low 

electricity demand could allow periodical shut down of generation plants for maintenance 

or security assessment, while knowing the periods of high electricity demand allows the on-

time operation of back-up units, the scheduling of resources or increasing the generation 

capacity with renewable sources of energy. Understanding and forecasting electricity load 

plays an important role in the liberalized competitive electricity markets not only because 

ensures the system stability but also affects the decisions for expansion possibilities, 

changes in companies’ market shares, and create profits from trading excess electricity 

capacity in near countries through the interconnection of grids.  

 

Forecasting techniques and models are being used extensively in academic literature in 

many areas. In economics and finance, forecasting models have been designed in predicting 
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inflation, exchange rates and the future behavior of macroeconomic variables. In supply 

chain management forecasting has been used in inventory management and demand 

prediction, while forecasting methodology has also been used outside the area of business 

and economy, such as medicine. In electricity load forecasting there are several different 

methodologies and forecasting horizons developed without a clear consensus about the 

forecasting superiority of a model or forecasting accuracy of complex modeling. The models 

developed in academic literature range from traditional causal relationship models such as 

regression and multiple regression models, time series models, exponential smoothing, 

artificial neural networks, and fuzzy logic models.  

 

Developing complex models with the use of many different variables has not provide 

evidence of a better understanding of the behavior of electricity demand or producing more 

accurate forecasts compared to more simple models. This thesis will try to understand the 

electricity load behavior by focusing in simple econometric and time series techniques. The 

research question is how simple models that could be used by a broad range of users such 

as market experts and policy makers capture the behavior of electricity load. In addition, 

can these models produce reliable forecasts in the short-term using real data for Spain? The 

structure of the thesis is organized as: Chapter 2 Literature Review provides a brief review 

of existing literature on energy and electricity forecasting, Chapter 3 Methodology presents 

the different models and the data that will be used in the analysis, and Chapter 4 Conclusion 

will discuss the statistical results, accuracy measures and concluding remarks. 
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2. Literature Review 

2.1 The Spanish Electricity Market 

The Spanish electricity market has been subject to continuous transformation since the early 

20th century, not only in the regulation that govern it but also in the energy mix used for 

electricity production. In addition, different social and economic events such as the period 

of the Spanish Civil war, the European deregulation of electricity markets, the economic 

and oil crises during the 1970s affected the energy decisions about electricity generation 

through the years (Chaparro-Peláez et al., 2020).  

 

The electricity market in Spain before the 1997 was regulated by the Ministry of Industry 

and Energy which was setting the electricity prices in an effort to achieve efficiency in 

electricity market and financial stabilization. The State through the state-owned company 

Red Electrica de Espana was controlling the electricity system and transmission network. In 

electricity generation side there was not competition present and electricity generation was 

made from a couple of fully integrated private-owned companies. The generation capacity 

of each company and electricity generation station was known and the risk was significant 

low. The principle of price formation in state regulated electricity markets was the profit 

maximization by taking into account the investment required and the operational costs from 

electricity generation and distribution. The Spanish State, thus, was setting the electricity 

tariff and was controlling the efficient allocation of energy resources and investment 

allowances (Chaparro-Peláez et al., 2020). 

  

The Spanish energy mix during this period included coal and hydropower energy sources as 

the largest shares used for the electricity generation. Coal was the dominant energy fuel 

during this period since Spain, as the majority of European countries, had not any oil and 

gas reserves and hydropower had volatility in generation capacity due to weather conditions 

and especially long dry periods during summer. Also, the oil crises during the 1970s together 

with the growing electricity demand affected the government decisions in the electricity 

market in an attempt to increase capacity through investments in additional coal burning and 

nuclear plants.  
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The liberalization of the Spanish electricity market started in 1994 with the creation of a 

regulatory and transparency commission for the entire electricity system, and was concluded 

in 1997 with the adoption of the European Directive about electricity markets. State 

intervention in the electricity supply is not anymore needed since the basic principle dictates 

that competition among the existing companies and the companies that are free to enter in 

the market would result to the efficient match of supply and demand, stimulate technological 

innovation and promote efficiency of new investment decisions. Adding to the changes in 

the regulation of the electricity market, significant changes observed also in the Spanish 

energy mix. The environmental consequences of coal burning power plants, European 

policies to reduce the CO2 emissions, and the introduction of combined heat and power 

(CHP) using natural gas as energy fuel changed the primary energy sources included in the 

Spanish energy mix. In the energy mix there is an increasing share of renewable sources of 

energy due to the cost decrease and competitiveness of wind turbines and photovoltaics. 

Nowadays, the electricity generation in Spain is derived mainly from the use of natural gas 

fueled generation facilities, nuclear plants, hydropower plants and renewable sources of 

energy while the existed coal-burning power plants are operating during periods of high 

electricity demand as a back-up plan.  

 

Spain is one of the largest European countries in terms of population and electricity 

consumption. The electricity demand in the country shows significant variation due to 

different weather conditions that are observed during the year (Moral-Carcedo & Vicéns-

Otero, 2005). A large percentage of the Spanish residential population has not heating 

utilities that operate with natural gas or oil, having as a result the use of electricity for heating 

systems such as radiators and electricity heat pumps (Blázquez et al., 2012). As population 

in Spain has been constantly growing, the electricity demand has also been increasing. This 

increasing electricity demand in the country raises concerns not only for the increasing 

emissions into the environment from the power plant facilities, but also about the energy 

security and autarchy of the country. Disruptions in the availability of electricity could affect 

negatively the industrial production and economic growth of the country. In addition, excess 

electricity demand according to the economic theory has as a consequence high electricity 

prices, which in turn affect key macroeconomic indicators and household incomes.    
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Electricity nowadays is viewed as a commodity that is also traded in a similar way with the 

other traditional commodities in organized markets, the Power Exchange Market. The 

market liberalization of the electricity market led in the competition of mainly two large 

private-owned companies, Endesa and Iberdrola that generate the majority of electricity 

capacity and few smaller private-owned competitive companies, Gas Natural Fenosa, EGL, 

EDP Hidrocantabrico Energia, and Acciona. Electricity price formation is set every day in 

the Power Exchange, an organized market in which electricity producers and electricity 

purchasers are negotiating different selling and buying prices. The electricity power 

exchange is settling the hourly prices of electricity and the respective quantities of electricity 

sold and bought at that price level. The auctions in the daily power exchange are settled by 

the market operator. The operator is matching the selling and buying orders, calculates the 

marginal electricity price, distributes the generation and demand share among the 

participating agents, and examines different technical restrictions in the production or 

transmission of electricity. The difference of electricity power exchange with other 

commodity organized markets is that prices are set for the next day of the occurrence of the 

negotiations (day a-head prices). Obviously, there is risk inherited in the process since 

different events could occur affecting the generation facilities or the transmission lines, 

creating supply disruptions in electricity supply chain. 

 

2.2 Forecasting in Electricity Markets 

During the last decades, there are several researches and concerns about energy management 

since the availability of energy resources is decreasing and several actions have been taken 

for the decarbonization of the national energy mixes. Electricity is generated through the 

use of other energy sources with carbon being constantly replaced from other alternative 

fuels with less CO2 emissions. However, the availability of electricity generated by 

hydropower, wind farms, and photovoltaics is subject to the weather conditions and cannot 

reliably face unanticipated peak electricity load periods. Also, natural gas and nuclear plants 

dependent on energy fuels that their reserves are decreasing and their prices exhibit 

significant volatility. Electricity capacity is, thus, dependent in the availability of energy 

sources and the risk of supply chain disruptions in the value chains of those energy sources 

could affect the stability of the whole electricity power system. 
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The disruptions in the supply of energy fuels such as natural gas (for natural gas electric 

generation plants), Uranium (for nuclear electricity generation plants) or the unavailability 

of water resources (for hydropower generation stations) and the dependance of renewable 

sources of energy in weather conditions, are not the only unforeseen events that could create 

disruption in electricity systems. Significant risk is also inherited in the physical 

infrastructure of the electric grid. Possible breakdowns in the step-up or step-down voltages 

substations, load imbalances that could create a black out in the whole system, or damages 

in the transmission cables create threats in the optimal power system operations.   

An important difference between electricity and other sources of energy or other 

commodities is that electricity is a just-in-time form of energy since the electricity 

generation plants create electricity, simultaneously fed into the electricity grid and 

consumed by the final residential, industrial and commercial user. This property of 

electricity of non-storage availability and inventory building for future use does not allow 

an easy solution in the problems mentioned above.  In general terms, electricity demand 

presents strong seasonal variation since there are periods of significant low electricity load 

and periods of peak electricity load. Electricity generation plants feed constantly the system 

with the minimum electricity necessary. However, there are periods during a day that 

additional utilities are operating for matching increased electricity demand by feeding 

additional load in the system (intermediate load). The efficiency of the system is tested 

during small periods of time when sudden demand increases require the operation of back-

up electricity power generation facilities since the base and intermediate load suppliers 

cannot face the peak electricity load. In the other hand, oversupplying the system with 

electricity load creates significant operational costs and wastes of energy fuel resources. 

Thus, efficiency and optimal operation of the electricity grid requires a matching in the 

electricity generation with the electricity load.  

Electricity demand forecasting plays an important role in the electricity supply and demand 

management for all the agents that participate in the electricity market. Available 

information about the electricity load behavior and forecasted electricity load allows the 

electricity generation facilities (supply side) to efficient allocate their resources and 

minimize operational costs. Electricity generation facilities can efficiently schedule their 

power generation from the available energy sources, reduce the cost from the wastage 

energy source consumption, take advantages of periods when there is increased electricity 
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generation from renewable sources of energy and ensuring a reliable electricity supply in 

the grid. In addition, accurate forecasts allow the electricity system operator to change the 

electricity generation to match the forecasted demand (secondary regulation system). 

 Accurate load forecasts are beneficial not only for the electricity generation companies and 

system operators, but also for policy makers and distributors of electricity. Long-term 

forecasts about electricity demand allow the policy makers to take decisions for supporting 

additional investment on production capacities or about the energy mix of the country in the 

short-term or in the long-term. Periodic maintenance of production facilities or transmission 

facilities can be performed without creating disruptions in the grid with the use of electricity 

load forecasts. Forecasting electricity load provides information about potential expansion 

of the electric grid or creating additional substations. Electricity modelling and forecasting 

could provide valuable information to electricity grid operators and distributors for the 

effective and resilient grid operation. The continuous monitoring of electricity load pattern 

and the behavior of the factors that affect electricity consumption allows the grid operators 

to detect anomalies in the electricity grid, identify potential problems and take precaution 

measures for preventing blackouts, brownouts and electricity supply disruptions. Another 

important application of forecasting methodology in electricity markets is on the side of 

electricity price. Accurate forecasts about the wholesale electricity price could provide a 

significant benefit for mitigating uncertainty and risk on generation production companies 

(Lindberg et al., 2019). 

Significant academic research has been devoted also in the electricity price modeling and 

forecasting. As the electricity production companies are participating in a market where 

electricity prices and electricity production quantities are being settled for the next day, 

mitigating the operational risk needs being able to forecast the electricity price. Electricity 

load and price forecasting plays an important role in electricity Power Exchange since it 

enables all the participant in the market to make informed decisions about buying and selling 

electricity in the spot and future market. Electricity prices present similar seasonal variation 

due to the variation of electricity load (according to the law of demand and supply), variation 

in the economic activity (working days and weekends), and regional climate factors. In 

addition, the time series process of electricity prices exhibits several spikes, negative values 

and long memory (Seitaridis et al., 2021). Accurate forecasts allow the optimization of 
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market participants’ portfolio, the efficient management of risk in electricity trading markets 

and profit maximization.  

 

2.3 Overview of Electricity Load Models 

Forecasting or predicting the future values of behavior has been applied in a wide range of 

human interests. Among the first forecasting attempts that are cited are the weather 

prediction, dating back millennials in Ancient Greece and more formally weather 

forecasting research during the 19th century. Several forecasting models and tools have been 

developed for forecasting weather, earthquakes, political results, the spread of virous in 

medicine, macroeconomic trends, financial performance, stock exchange returns, demand 

and sales in supply chain management, and energy consumption. The definition of 

forecasting lies in the utilization of all the available information or historical data as input 

in an attempt to make predictions about the trends in the future behavior of the variable of 

interest. Forecasting techniques are divided in two categories, qualitative forecasting 

techniques that are based on the personal opinion of experts through interviews or analysis 

of data and quantitative forecasting techniques that use historical statistical data for 

projecting the past statistical behavior and patterns into the future. The forecasting models 

are also divided in categories depending the forecasting horizon, the number of periods for 

which the forecast is generated.  

In energy management and electricity consumption forecasting methodology plays an 

important role since it is essential to decision making for the efficient consumption of energy 

sources, investment in renewable energy sources and the optimal operation of energy 

systems. The electricity load forecasting has drawn significant attention in academic 

literature and in energy business debates. As population is increasing worldwide and 

technology is progressing, the more electricity is expected to be consumed for cooking, 

heating, and operation of electrical appliances. In addition, new consumer norms and 

preferences such as the gradual substitution of petrol automobiles with electric and the 

increase in the number of electric consuming devices that make everyday life more 

comfortable are expected to increase the electricity demand.  

The electricity load forecasting depending on the forecasting horizon can be classified into 

three categories; short-term forecasting (forecasted values up to a couple of weeks ahead), 
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medium-term forecasting (forecasting horizon ranges from one month up to a year), and 

long-term forecasting (forecasting electricity load for a period more to one year ahead).  

Long-term forecasts about electricity demand are useful for managing the energy resources, 

taking decision about the future energy mix, examining possibilities of capacity expansion 

or shutting down electricity generation plants, and expanding the electricity grid. Medium-

term forecasting of electricity load is used for the planning the supply chain of energy 

resources in electricity generation facilities, building stocks of energy fuels in period of 

potential supply disruptions, examining the potential revenues of the generation companies, 

and designing future tariffs or distribution fees. Finally, the short-term electricity load 

forecasting is important for facing peak load demand, managing the efficient operation of 

the electricity network, reduce the uncertainty for the production companies in the amount 

of revenues that will make in short term, and profit generation from electricity exchange 

with different electricity systems.  

The majority of the quantitative forecasting models that we can see in academic literature 

can be categorized into three categories; time series models, regression analysis models, and 

soft computing models using simulation and artificial intelligence.  

2.3.1 Time Series Models 

Time series models are among the simplest models used in electricity load forecasting. 

Essential in this modeling and forecasting process is the availability of electricity load time 

series, meaning the continuous in time sequence of observations. The forecasted values of 

the variable of interest in time series models is made from the behavior of the previous 

observations. In this category we can find simple averaging models such as Moving 

Averages models, Exponential Smoothing models, Holt-Winters Exponential Smoothing 

model, and Autoregressive Moving Average Models (ARMA) (Ghalehkhondabi et al., 

2016).  

Time series models have been tested in academic literature for all the forecasting horizons. 

ARMA models were used by (Ediger and Akar, 2006) for generating the future demand for 

several energy sources in Turkey, including electricity, based on annual historical data from 

1950 to 2004. Different autoregressive models were compared including the Autoregressive 

Integrated Moving Average (ARIMA) and Seasonal Autoregressive Integrated Moving 

Average (SARIMA) models for energy demand by source and total energy demand. Ediger 
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and Akar concluded that forecasts for the total energy demand using the ARIMA and 

SARIMA models performed better that the summation of forecasts by energy sources based 

on criteria such as the goodness of fit and forecasting error. In short-term forecasting 

modelling, (Pappas et al., 2010) applied the ARMA methodology in hourly electricity load 

observations for two years from the Greek power system in order to forecast hourly 

electricity load in 2006. The proposed ARMA model was fitted using three different criteria 

(Akaike Information Criterion, Corrected Akaike Information Criterion, and Schwarz’s 

Bayesian Information Criterion) finding satisfactory results in predicting week ahead hourly 

electricity load (short-term horizon). The ARIMA and Generalized Autoregressive 

Conditional Heteroskedasticity (GARCH) methodology was used by (Hor et al., 2006) to 

predict electricity load daily patterns by taking into account also the distribution of residuals 

(Ghalehkhondabi et al., 2016).  

2.3.2 Regression Models 

The second category of electricity modeling methodology includes regression models, one 

of the most used statistical methodologies for examining the causal relationship between 

variables and in some instances used for generating forecasts. Building a regression model 

requires constructing the relationships between the dependent or response variable and other 

independent variables that affect the dependent variable. In the case of electricity load 

forecasting, regression models use the historical values of the electricity load (dependent or 

response variable) and one or several influence or independent variables (price, weather, 

humidity) that have a causal relationship with electricity consumption. Regression models 

are distinguished into linear and nonlinear regression models accordingly to the relationship 

between the variables. In the case of the linear relationship between the variables of the 

model, regression models can be univariate models (simple linear regression models or 

multiple linear regression models) and multivariate regression models (the regression model 

examines the linear relationship between multiple dependent and independent variables) 

(Ghalehkhondabi et al., 2016). 

In short-horizon electricity load forecasting using hourly observations, (Ramanathan et al., 

1997) developed a multivariate regression model with different regression equations for 

each hour of day. In their approach, twenty-four different regression equations occurred for 

the weekdays and another twenty-four different regression equations emerged for each hour 

during a weekend. Adjusting the regression equations with the forecast error of the previous 
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hour equation produced extremely good forecasting performance against a wide range of 

alternative models including ARMA techniques with few limitations in the presence of 

extreme temperature events.  

An important property of regression, and in general econometric models, is the correlation 

of macro-economic and social variables with electricity demand.  A multiple regression 

equation for forecasting electricity demand in N. Cyprus was examined by (Egelioglu et al., 

1999). In this model, different economic variables including the electricity price, the number 

of customers, the number of tourists and annual electricity consumption examined 

highlighting the importance of developing weather sensitive models that could produce 

more accurate results. Adjustments of traditional regression models with time series 

approaches have also made. In (Harris and Liu, 1993) the dynamic relationship between 

electricity load and several independent variables was examined using monthly data in a 

multiple-input model together with ARIMA as a baseline transfer function for the error term. 

The synthesis of these two approaches according to the authors produced models with better 

understanding of the behavior of the data and the economic theory.  

The nonlinear relationship between energy load and temperature was studied by (Halepoto 

et al., 2014). The authors found that the nonlinear behavior of electricity load at any specific 

hour of the day and several exogenous variables affect the forecasting performance of 

models. They proposed that both linear and nonlinear modeling techniques would generate 

more realistic results. In their paper except from the traditional simple and multiple linear 

regressions included quadratic and exponential regressions for modelling the effect of 

temperature on hourly electricity load and validating their model for different 4-day samples 

from the historical data.  

In the methodology used in academic literature, we can find significant work in the use of 

panel data time series models for electricity load and electricity prices modeling. Panel data 

time series allows for clustering among time, and thus could provide insights about the 

hourly difference on the behavior of electricity load. The estimation of a linear panel data 

regression models assuming fixed effects was examined by Thomaidis and Biskas (2021) 

for analyzing the key fundamental drivers of electricity prices in Greece showing that there 

is heterogeneity in dynamic behavior of hourly electricity prices. The panel date time series 

analysis allows the examination of the dynamic relationship between the variables and 

captures the memory of the electricity time series process.   
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2.3.3 Soft Computing Models 

In academic literature except of the two broad energy modeling and forecasting methods 

described above, there are several models developed based on computing modeling and 

artificial intelligence. The advantage of those models is their ability to capture the complex 

behavior of electricity systems, mimic energy phenomena and examine different scenarios. 

Several soft computing methodologies are suggested in academic literature such as Genetic 

Algorithms, Fuzzy Logic, Neural Networks, and Evolutionary Algorithms (Ghalehkhondabi 

et al., 2016).  However, soft computing models are having the disadvantage that are not 

easily understood and cannot be used from an audience with limited programming 

knowledge. As in this dissertation electricity load modeling and forecasting capabilities will 

be performed with the use of time series and regression models analysis, soft computing 

modelling is not analyzed further.  
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3. Methodology 

3.1 Data Description and Analysis 

In this section a analysis of the sample data for the key variables that are going to be used is 

presented. Real data for electricity load are provided from the European Network of 

Transmission System Operators for Electricity (ENTSO-E) transparency platform in which 

thirty-five national transmission operators are reporting electricity generation, 

transportation and consumption data for ensuring the security of the European electricity 

grid. Actual hourly electricity load data for Spain are used for the analyzed time period 

covering from 01/01/2019 at 01:00 until 31/12/2019 at 24:00 

(https://transparency.entsoe.eu/load-domain/r2/totalLoadR2/show, accessed:01 June 2023). 

The data set includes 8.760 hourly observations for the actual total electricity load in Spain 

with the minimum observed electricity consumption being 17.168 MW and the maximum 

electricity load being 40.107 MW (mean value 28.537,41 MW and standard deviation 

4.524,51). Table 1 presents the descriptive statistics for the total Electricity load by hour and 

for the whole time series. On average, peak electricity load is observed at 13:00, while the 

larger standard deviation is observed at 09:00. Performing the Shapiro-Wilk and Skewness-

Kurtosis test for normality in the Actual Total Electricity Load, we could not reject the null 

hypothesis that the variable is normally distributed at 5% level of significance for each hour 

of the day (with exception the 02:00 and 20:00). Thus, electricity forecasting models that 

are based on the assumption of non-normal distributed variable are expected to poorly 

perform.  
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Table 1 Descriptive Statistics: Electricity Load over the period 01/01/19-31/12/19 

Hour Mean St. Deviation Skewness Kurtosis 

01:00 25138.81 2027.491 .126546 2.456702 

02:00 23792.78 1747.039 -.0457488 2.564048 

03:00 23000.88 1606.076 -.2045823 2.747808 

04:00 22650.34 1581.456 -.325611 2.939562 

05:00 22719.36 1627.052 -.4626522 3.079485 

06:00 23729.73 2051.77 -.5124323 2.658191 

07:00 25673.54 2921.983 -.613535 2.19648 

08:00 27952.92 3813.568 -.585012 2.151791 

09:00 29752.4 4087.034 -.47225 2.36221 

10:00 31021.34 3814.594 -.3896329 2.574172 

11:00 31730.44 3566.857 -.3101583 2.619569 

12:00 32100.55 3488.666 -.3249996 2.559539 

13:00 32155.35 3447.513 -.2853374 2.532362 

14:00 31780.11 3364.096 -.1587558 2.498789 

15:00 30979.33 3350.07 -.2130735 2.636585 

16:00 30411.38 3539.759 -.2370169 2.593737 

17:00 30087.37 3619.856 -.2303898 2.532592 

18:00 29917.62 3537.917 -.1842982 2.436762 

19:00 30417.08 3512.613 .0132285 2.498083 

20:00 31368.35 3362.576 .0941747 2.621341 

21:00 31990.97 3093.376 .2518188 2.670597 

22:00 30899.44 3088.565 .4683471 2.598752 

23:00 28800.91 2833.951 .4284667 2.458061 

24:00 26834.93 2307.325 .2235331 2.4662 

 

Whole Sample 

 

28537.94 

 

4524.502 

 

.0599045 

 

2.133783 
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Figure 1. Hourly Electricity Load – Spain 01/01/19 at 01:00 to 31/12/19 at 24:00. 

 

One first observation from the above time plot of electricity load we can detect seasonal 

periodicities. Electricity load appears to exhibit periodicities within a day, within a week 

and within months. Particular hours of the day appear to have significant lower electricity 

load compared to other, while similar patterns appear between the weekdays and the days 

of the weekend. Also, there is significant higher electricity consumption during summer and 

winter months compared with the remaining months. The seasonality in electricity load 

behavior is in accordance with traditional economic theory since the economic activity 

during the working hours of the day and the working days of the week is higher. In addition, 

the electricity for residential cooling and heating is higher during winter and summer months 

respectively. Thus, seasonality in electricity load is a factor that should be taken into account 

in modeling and forecasting with the adaption of dummy variables. Dummy variables are 

usually taking the value 1 for a specific hour/day/month or season and 0 elsewhere (with 1 

dummy variable less than the number of observed facts, i.e. 6 dummy variables for the day 

of the week seasonality). We can see the periodicity in electricity load described, in the next 

box plots by hour of the day, by day of the week (1 for Monday to 7 for Sunday) and by 

month of the year.  



 
Gerasimos Minetos, Time Series Analysis of Electricity Demand. 

 

 

Postgraduate Dissertation  17 

Figure 2: Box-Plots of Electricity Load by Hour of the day, by Day of the week and by Month. 

 

In general terms, electricity load as provided by ENTSO-E will be used as the dependent 

variable in the majority of the models that will be examined in the next session. The main 

independent variables that will be examined are the day-ahead electricity price 

(Euros/MWh), day ahead scheduled total electricity generation and average temperature. All 

the variables are available on ENTSO-E transparency platform. Also, the hourly average 

temperature in Spain is provided by ENTSO-E transparency platform and as plotted in the 

graph below we can see that in Spain the temperature variates from 1 degree of Celsius to 

34 degrees of Celsius on average for the whole country.  
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Figure 3. Average Hourly Temperature in Spain from 01/01/2019 01:00 to 31/12/2019 24:00 

 

There are several arguments in academic literature about the effect of average temperature 

on electricity consumption since most models assume a linear relationship between the two 

variables. However, lately there have designed and examined electricity load models 

arguing for a non-linear relationship between electricity consumption and temperature 

should be used since a marginal increase from 18 degrees of Celsius to 19 degrees of Celsius 

or a marginal decrease from 19 degrees to 18 is not expected to have a significant result in 

electricity load. The non-linear relationship between temperature and electricity 

consumption is introduced in many research papers of the academic literature with the use 

of variables capturing the deviation from the temperature that will result in an increase in 

electricity consumption for heating or cooling. This non-linear realization of temperature is 

commonly named as Heating Degree Days (HDD) and Cooling Degree Days (CDD) and 

take into account the degrees difference in observed temperature outside from the human 

comfort zone. These variables are calculated as:  

𝐻𝐷𝐷𝑡 = max(0, 𝑇𝐻 − 𝑇𝑡) 

𝐶𝐷𝐷𝑡 = 𝑚𝑎𝑥(0, 𝑇𝑡 − 𝑇𝐶) 

In the formulas above 𝑇𝑡 denotes the observed average temperature in time 𝑡 while 𝑇𝐻 and 

𝑇𝐶 denotes the threshold temperature for heat and cold, the temperature over and under 
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which is accompanied with increase in electricity consumption because of the use of 

electricity appliances. In the analysis of this dissertation, the threshold temperature is set to 

20 degrees of Celsius for the HDD and 15 degrees of Celsius for CDD as suggested by the 

Spanish Technical System Operator (Moral-Carcedo & Vicéns-Otero, 2005).  

3.2 Electricity Load Modeling and Forecasting 

3.2.1 Time Series Models  

Among the simplest methods for generating electricity load forecasts are the averaging 

methods and the exponential smoothing method. These models are particular useful because 

they use only the available information of the historical time series of electricity load and 

are simple in their calculations.  

3.2.1.1 Moving Average Method 

One of the most common averaging methods used in forecasting is the Simple Moving 

Average, which takes into account the historical information of the time series to generate a 

forecast value. The simple moving average does not use the whole available past 

observations for creating a forecast but a few numbers of previous observations. One of the 

properties of this method is that the simple moving average is rolling over time and it 

“drops” information that is not relevant. The formula of the Simple Moving Average has the 

form: 

𝐹𝑜𝑟𝑒𝑐𝑎𝑠𝑡𝑒𝑑 𝐸𝑙𝑒𝑐𝑡𝑟𝑖𝑐𝑖𝑡𝑦 𝑙𝑜𝑎𝑑𝑡 =
∑ 𝐸𝑙𝑒𝑐𝑡𝑟𝑖𝑐𝑖𝑡𝑦 𝐿𝑜𝑎𝑑𝑡−𝑖

𝑛
1

𝑛
 

In the above equation, n is the number of periods used for generating the forecast.  

 

3.2.1.2 Simple Exponential Smoothing Model 

Simple exponential Smoothing is the second approach used in forecasting and has been 

applied in energy and electricity consumption based only on past observations of the time 

series. The exponential smoothing models are similar with the moving average models 

described above with the difference that a weight in the more recent observations is imposed. 

Also, the weights in the observations are different and exponentially decrease as more far to 

the history of the time series we are going (Islam et al., 2020). By denoting with α the 
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smoothing coefficient (0 < 𝛼 < 1), the formula for the exponential smoothing moving 

average has the form:  

𝐹𝑜𝑟𝑒𝑐𝑎𝑠𝑡𝑒𝑑 𝐸𝑙. 𝑙𝑜𝑎𝑑𝑡 = 𝑎 ∗  𝐸𝑙𝑒𝑐. 𝐿𝑜𝑎𝑑𝑡−1 + (1 − 𝛼) ∗ 𝐹𝑜𝑟𝑒𝑐𝑎𝑠𝑡𝑒𝑑 𝐸𝑙. 𝐿𝑜𝑎𝑑𝑡−1  

 

3.2.1.3 Holt-Winters Exponential Smoothing Model 

The Holt-Winters exponential smoothing method generalized the above approach of simple 

exponential smoothing methodology to deal with the presence of seasonal and trend 

behavior in the time series. Trend can be seen as the long-term tendency of a time series, 

and in case of electricity we expect to be the long-term increase. Seasonality is the tendency 

of electricity load to exhibit a repeating behavior. In Holt-Winters model there are three 

exponential parameters; the smoothing coefficient, the seasonal component coefficient, and 

the trend component coefficient. In the short-term electricity forecasting using few periods 

(less than a couple of years), trend is not really observed and thus Holt-Winters seasonal 

model should be preferred (additive seasonality or multiplicative seasonality) (Islam et al., 

2020).  

 

3.2.2 Autoregressive Models  

 

The advantage of Autoregressive models is that the behavior of electricity load and forecasts 

are captured only from the historical observations of electricity load. Autoregressive Models 

are built on the properties of the Exponential Smoothing and Moving Average models 

described above. An Autoregressive Model (AR) assumes that the current value of 

electricity load is a linear combination of its previous observed values (Islam et al., 2020). 

The estimation of AR model of order p is simple linear regression with the current value of 

electricity load as the dependent variable and p-lag values of electricity load as the 

independent variables. The representation of an 𝐴𝑅(𝑝) model has the form:  

𝐿𝑛𝑙𝑜𝑎𝑑𝑡 = 𝛽0 +  ∑ 𝛽𝑖 ∗ 𝐿𝑛𝑙𝑜𝑎𝑑𝑡−𝑖

𝑝

𝑖=1

+  𝛼𝑡 

In the above model, 𝛽0 is a constant,  𝛽𝑖 are the regression coefficients of the lag values of 

electricity load and their number is equally to the number of the order of the AR process p, 
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and 𝛼𝑡 is the error term of white noise (an important property and building block in 

autoregressive models).  

In electricity load forecasting more common are autoregressive moving average models 

(ARMA) in which the forecasted value of electricity load is a linear combination of lag 

values of the electricity load and previous white noises. An 𝐴𝑅𝑀𝐴 (𝑝, 𝑞) model without a 

constant term has the form:  

  

𝐿𝑛𝑙𝑜𝑎𝑑𝑡 =  ∑ 𝜑𝑖 ∗ 𝐿𝑛𝑙𝑜𝑎𝑑𝑡−𝑖

𝑝

𝑖=1

+ ∑ 𝛽𝑗 ∗

𝑞

𝑗=1

𝜀𝑡−𝑗 

In the above model, 𝜑𝑖 are the coefficients of the AR process of order p, 𝛽𝑗 are the 

coefficients of the MA process of order q, and 𝜀𝑡 are the white noise terms.  

The ARMA models as described above require a time series that is stationary. However, 

stationarity is a property that rarely exist in time series. In the case of non-stationary time 

series, the modelling process follows the Box-Jenkins methodology of differencing the time 

series to remove the non-stationarity. The methodology of integration enters the AR and MA 

processes, creating the Autoregressive Integrated Moving Average (ARIMA) models of 

order p for the AR process, q for the MA process and d for the differencing times of the time 

series. In available forecasting models used in academic literature for energy and electricity 

forecasting we can also find some other similar models such as the Seasonal ARIMA (or 

SARIMA) and Autoregressive Moving Average with Exogenous variables (ARMAX) 

(Islam et al., 2020).  

The time series models and autoregressive models described have a significant advantage 

that they require only the knowledge of the past values of electricity load for generating 

forecasts. However, the most important disadvantage of these methods is that they lack in 

understanding and explaining the behavior of electricity load over time. Electricity load 

changes not only because of time but also because of other factors influencing the demand 

for electricity. Hence, forecasting models should examine not only the effect of time but also 

the effect of other variables in electricity load.  
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3.3 Regression and other Econometric Models 

3.3.1 Multiple Linear Regression 

Regression models that describe the linear relationship between one dependent or response 

variable and more than one independent or explanatory variables are called multiple linear 

regression models (Yildiz et al., 2017). In this case, the natural logarithmic value of total 

electricity load (lnLoad) is the dependent variable and as independent variables are used the 

seasonal dummies, the natural logarithmic values of day-ahead price (lnPrice) and the 

temperature variables (HDD and CDD). The representation of a multiple linear regression 

model has the form:  

𝐿𝑛𝐿𝑜𝑎𝑑𝑡 =  𝛽0 + 𝛽1 ∗ 𝐿𝑛𝑃𝑟𝑖𝑐𝑒𝑡 + +𝛽2 ∗ 𝐻𝐷𝐷𝑡 + 𝛽3 ∗ 𝐶𝐷𝐷𝑡 + ∑  

9

4

𝛽𝑖 ∗ 𝐷𝑖 + 𝜀 

In the regression equation above the 𝛽𝑖 are the regression coefficients (including a constant 

term), 𝐷𝑖 are the seasonal dummies (taking the value 1 for a specific day of the week and 0 

for the remaining days of the week) and 𝜀𝑡 is the error term. Alternative variations in the 

regression equation above are including as independent variables the hour of the day, the 

number of the day, or/and the number of the month to capture the deterministic part of 

electricity load instead of dummy variables. Estimation of the regression model using the 

historical data provides estimates for the coefficient of each independent variable, and thus 

we can generate the forecasted value of lnLoad. Usually, the past observations of the 

variables are divided into two parts with the first part being used for the model estimation 

while the second part for evaluation of the forecasting accuracy (Islam et al., 2020). If the 

data set is relatively large, it allows rolling division of the data set into estimation and 

forecasting testing regions.  

3.4 Postestimation Model Evaluation and Forecast Accuracy 

In the previous sections was highlighted the importance of forecasting of electricity load 

and described the forecasting models presented in academic literature without presenting a 

former definition of the term forecasting. Forecasting is developing the mechanism for 

making predictions about the future performance of variables or occurrence of events based 

on the historical and current information. The forecasting process starts with the data 

evaluation, continues with the selection of the most suitable forecasting model (or models), 

the decision about the forecasting periods and the generation of the forecasts, and concludes 
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with the monitoring and evaluation of the forecasting performance when the actual future 

variables will become available. Electricity load forecasts are essential for the generation 

facilities and electricity system operators since they are used for ensuring the electricity grid 

stability and are essential for the profitability of the agents in the electricity market. In this 

context, the accuracy of the forecasting process in really important. Usually, forecasts about 

demand are evaluated regularly and improvements are made in case that there are changes 

in the variables that degrades the forecast performance over time (Islam et al., 2020).  

Important factor for the evaluation of the forecasting models is the size of the data set since 

a larger data set does not necessarily means a higher forecasting accuracy. After the 

forecasting model is chosen, the historical data are divided into two parts with the first part 

being used for the estimation of the models’ parameters (in-sample period) and forecast 

generation and the second part being used for evaluating the forecasts generated with the 

actual values of the historical data (out-of-sample period or postestimation testing). If the 

forecasting accuracy measures suggest that the model captures satisfactory the future values 

of electricity load, then the forecasting windows are rolling for generating the forecasts for 

the future values. Forecasting accuracy evaluation is performed by graphing the forecasted 

and actual values on the data set (visual performance), and by calculating forecasting 

accuracy metrics. Forecasting accuracy metrics are using the forecast error which is defined 

as the difference between the actual value and the forecast at time t. If the difference is 

positive, the forecasting model underestimated the future electricity load while if the 

difference is negative the forecasting model overestimated the future electricity load (Islam 

et al., 2020). Few of the most used forecasting accuracy metrics are presented below.  

Mean Absolute Deviation (MAD) 

The Mean Absolute Deviation (MAD) metric is the average of the absolute values of the 

forecast errors. The absolute value in the calculation of this forecast accuracy measure 

guarantees that possible changes in the polarities of the forecast errors will not cancel each 

other, and as a result the MAD shows the size of the error (Islam et al., 2020). The larger 

the MAD, the less accurate the forecasting model since it systematically out- or over- 

estimate the future values of electricity load.  

𝑀𝐴𝐷 =  
|∑(𝐴𝑐𝑡𝑢𝑎𝑙 𝑉𝑎𝑙𝑢𝑒 − 𝐹𝑜𝑟𝑒𝑐𝑎𝑠𝑡)|

𝑛⁄  
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Mean Square Error (MSE) 

The Mean Square Error (MSE) is the average of the squared errors. The larger the MSE, the 

less accurate the forecasting model. This performance metrics gives a bigger magnitude to 

large errors through squaring them. 

𝑀𝑆𝐸 =  
∑(𝐴𝑐𝑡𝑢𝑎𝑙 𝑉𝑎𝑙𝑢𝑒 − 𝐹𝑜𝑟𝑒𝑐𝑎𝑠𝑡)2

𝑛⁄  

Mean Absolute Percent Error (MAPE) 

The Mean Absolute Percent Error (MAPE) metrics uses the mean value of the absolute 

percent forecast error (the division of forecast error with the actual observed value). This 

accuracy metric has the advantage that show as the percentage error with respect with the 

actual variable and thus give us better information about the quality of the error. 

𝑀𝐴𝑃𝐸 =   
|∑(𝐴𝑐𝑡𝑢𝑎𝑙 𝑉𝑎𝑙𝑢𝑒 − 𝐹𝑜𝑟𝑒𝑐𝑎𝑠𝑡)  

𝐴𝑐𝑡𝑢𝑎𝑙 𝑉𝑎𝑙𝑢𝑒⁄ |

𝑛
∗ 100 
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4. Results 

4.1 Time Series Analysis 

4.1.1. Simple Moving Average Models 

The first models that will be examined for their ability to model electricity load are the 

simple averaging models; models that are considered among the simplest and are 

extensively applied for forecasting. Firstly, the simple moving averages will be calculated 

using all the hourly electricity load observations by dividing the sample in two parts. The 

simple moving average of 12-hour, 24-hour, 36-hour, 48-hour, 72-hour, 96-hout, 120-hour, 

144-hour and 168-hour are calculated. Following the description of the simple moving 

average models described in Chapter 3, the 12-hour simple moving average or SMA(12) 

uses the previous 12 hourly observations for producing the forecast for the next period. 

Similarly, the SMA(24) used the previous 24 hourly observations (previous day) while the 

SMA(168) uses the 168 previous hourly observations (7-days). The SMA mentioned are 

made from the beginning of the sample and forecast accuracy metrics are calculated for the 

SMA electricity load forecasts for the period 01/08/2019 01:00 to 31/08/2019 24:00. 

A first assessing of simple average models is usually plotting the forecasts created against 

the actual observations when they are becoming available or by dividing the sample in two 

parts (estimation sample and forecast testing sample). In Figure 4 below, the Simple Moving 

Averages (SMA) and Actual Electricity Load for the period 01/08/2019 00:00 to 07/08/2019 

23:00 are presented. We observe that using all the available hourly data from the previous 

periods, the larger the number of previous observations used (or the longer the model’s 

memory), the smoother the forecasts created and the less are following the patterns of the 

original time series. 
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Figure 4.: SMA Forecasts and Actual Electricity Load 

 

A second assessment of each SMA models’ forecasting performance and ability to capture 

the behavior of the time series is through the calculation of the forecasting accuracy 

measures. For each SMA model, the forecasting error (difference between actual electricity 

load observed and the forecasted electricity load) were calculated. The forecasting accuracy 

metrics of Mean Absolute Deviation (MAD), Mean Absolute Percentage Error (MAPE), 

and Mean Square Error (MSE) for each SMA are presented in the Table 2 below. The 

SMA(168) generated the forecast for electricity load on August with the smaller forecasting 

accuracy metrics value since in average the forecast deviation from the actual electricity 

load was 2.634 MWh and  the forecast error compared to the observed actual value was 

9,82%. 
 

MAD MSE MAPE 

SMA(12) 3566,22 18394500 13,26% 

SMA(24) 2975,50 14706050 11,46% 

SMA(36) 2882,53 14117199 11,18% 

SMA(48) 2840,85 14556145 11,05% 

SMA(72) 2859,46 14085077 11,07% 

SMA(96) 2808,67 13292444 10,82% 

SMA(120) 2808,31 13169701 10,79% 

SMA(144) 2683,51 11312169 10,12% 

SMA(168) 2634,02 10552668 9,82% 

    
Table 2: Forecasting accuracy measures of the SMA 
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Another approach that could provide more accurate forecasts is calculating the simple 

moving average only for the specific hour of the day, thus calculating 24 SMA forecasts one 

for each hour of the day. For the hourly simple moving average forecasts, we are calculating 

the SMA(2), SMA(3), SMA(4), SMA(5), and SMA(6). The SMA(2) at 01:00, for example, 

generates the forecast for the specific hour of the day by computing the average of electricity 

load at 01:00 of the previous two days. Figure 5 below, illustrates the simple moving 

averages at 01:00 for the period 01/08/2019 to 31/08/2019. As we can see, the simple 

moving averages mimic the pattern of the actual electricity load at 01:00 with a delay. As 

we increasing the number of the observations used for deriving the SMA, the smoother the 

forecast. In Appendix A, Graph A.1 we followed the same procedure for more representative 

hours of the day. 

Figure 5: Hour Specific SMA forecast 

 

4.1.2. Autoregressive Moving Average (ARMA) models 

Another modeling approach for electricity load are the models that belong in the 

Autoregressive family methodology in which the response variable is dependent on its 

previous time observations (lag values). The autoregressive models come in many 

variations, as described in the literature review with ARMA (Autoregressive Moving 

Average models) being the most common for electricity load modeling and forecasting. The 

base rationale behind ARMA models for electricity load modeling is the idea that electricity 

load behavior can be considered as random and influenced by different non-deterministic 
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factors and processes that cannot be modeled. However, one of the challenges in 

Autoregressive models is choosing among the various modelling options (AR, MA, ARMA, 

ARIMA, ARMAX, SARIMA) and model identification (optimal lags for the AR, MA, and 

Seasonal Differentiation). 

 

One basic assumption for applying ARMA modelling approach in electricity load is the 

stationarity property of the time series. A time series process is stationary when exhibits a 

constant mean and a constant variance. The procedure that will follow for examining the 

ARIMA (p,d,q) approach on modeling electricity demand is using the hourly electricity load 

observations for Spain from 01/01/2019 01:00 to 31/07/2019 23:00 for model identification 

and estimation of parameters, and the observations from 01/08/2019 01:00 to 31/08/2019 

24:00 will be used for postestimation testing of forecasting accuracy. Testing the sample for 

stationarity by the Augmented Dickey-Fuller test gives as a Z(t) statistic of -10,850 and a 

corresponding p-value of 0,000 (reject the null hypothesis that the Total Electricity Load 

follows a random walk process with or without a drift). The same conclusion we get and 

from Phillips-Perron unit-root test which uses Newey-West standard errors for serial 

correlation (the unit-root test shows a Z(t) statistic of -15,710 at 9 Newey-West lags and a 

corresponding p-value of 0,000 providing us with sufficient evidence for rejecting the null 

hypothesis of a random walk with or without drift).  

 

From the unit-root tests we conclude that the hourly electricity load time series is a stationary 

process and thus there is no need for differencing and thus the parameter d=0 in the ARIMA 

model specification. For determining the number of the parameter p for the AR process and 

the parameter q for the MA process, statistical software such as STATA determines the 

optimal number of lags by fitting several different models and suggests the best model 

according to the minimization of information criteria. Based on Akaike’s Information 

Criterion (AIC), Schwarz’s Bayesian Information Criterion (BIC), and the Hannan and 

Quinn Information Criterion (HQIC) an ARIMA (2,0,2) model can be used for modeling 

electricity load. Plotting the Autocorrelation Function (ACF) and Partial Autocorrelation 

Function (PACF) should agree with the lags specified from the minimization process of the 

information criteria. 
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In the ACF graph in GA.3 of the Appendix A, we observe that the autocorrelation function 

for natural logarithm of electricity load for the estimation part of the sample does not decay 

exponentially but there is clear evidence of seasonal behavior on the time series since there 

is a repeating pattern in the autocorrelation during a stable number of lags. Thus, a model 

that is taking into account the seasonal behavior of electricity load during a day should be 

preferred. The 𝑆𝐴𝑅𝐼𝑀𝐴 (𝑝, 0, 𝑞, 𝑠) has been used in a large number of academic researches, 

with 𝑠 being the parameter for seasonal differencing. From the PACF plot we can see that 

the third lag is falling with the interval and hence a 2 lag AR and MA process might be 

sufficient for the estimation of the SARIMA specification. A 𝑆𝐴𝑅𝐼𝑀𝐴(2,0,2,12) is 

estimated for the data sample from 01/01/2019 to 31/07/2019 and forecasts for August 2019 

are plotted in Graph G.A.3 of the Appendix A. We observe that the SARIMA model is 

following the seasonal effects of the actual electricity load data behavior very closely. In 

addition, the 𝑆𝐴𝑅𝐼𝑀𝐴(2,0,2,12) produced forecasts with a MAD of 1.927 MWh and MAPE 

of 7,06%. 

 

 

4.2 Regression Models 

4.2.1 Multivariate Linear Regression (MLR) Models 

MLR with HDD/CDD as variables for the weather effect on electricity load 

There are several different versions of regression models presented in academic literature 

varying in the choice of dependent/independent variables, statistical specifications and 

assumptions. As the aim of this dissertation is to analyze and forecast electricity load; the 

response variable will be the natural logarithm of total electricity load. The independent 

variables that will be used are the day-ahead price, the 24-hour average day a-head price, 

the temperature effect (average temperature or the HDD and CDD temperature variables), 

and dummy variables for modeling the seasonal effects. The electricity load exhibits daily 

seasonality with lower consumptions during weekends. Thus, in the model will be included 

six dummy variables taking the value 1 or 0 according to the day of the week for Tuesday 

to Sunday. For the effect of each specific season of the year (winter, spring, summer and 

autumn) on electricity load, since the observations are for one year and we divide the sample 

in estimation and out-of-sample forecasting samples, we will include in the model the 
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variable month taking the values 1 to 12 for each month of the year. Thus, the model can be 

written as the equation below:  

𝐿𝑛𝑇𝑜𝑡𝑎𝑙𝐿𝑜𝑎𝑑𝑡 =       𝛽0 +  𝛽1 ∗ 𝐿𝑛𝑃𝑟𝑖𝑐𝑒𝐷𝐴𝑡 +  𝛽2 ∗ 𝐿𝑛𝐴𝑣𝑒𝑟24𝑃𝑟𝑖𝑐𝑒𝑡 +  𝛽3 ∗

𝐿𝑛𝐻𝐷𝐷𝑡 + 𝛽4 ∗ 𝐿𝑛𝐶𝐷𝐷𝑡 + 𝛽5 ∗ 𝐷𝑇𝑢𝑒𝑠𝑑𝑎𝑦 + 𝛽6 ∗ 𝐷𝑊𝑒𝑑𝑛𝑒𝑠𝑑𝑎𝑦 + 𝛽7 ∗ 𝐷𝑇ℎ𝑢𝑟𝑠𝑑𝑎𝑦 + 𝛽8 ∗

𝐷𝐹𝑟𝑖𝑑𝑎𝑦 + 𝛽9 ∗ 𝐷𝑆𝑎𝑡𝑢𝑟𝑑𝑎𝑦 + 𝛽10 ∗ 𝐷𝑆𝑢𝑛𝑑𝑎𝑦 +  𝛽11 ∗ 𝑀𝑜𝑛𝑡ℎ +  𝜀𝑡  

 

For the estimation of the coefficients 𝛽𝑖
 
 in the above linear regression model we will use 

the hourly observations of each variable from 01/01/2019 00:00 until 31/07/2019 24:00 and 

then we will test the model’s forecasting ability by testing out-of-sample forecasts for 

August 2019 with the actual observations.  Using 5.064 hourly observations we get the 

regression output using ordinary least squares (OLS) from STATA as shown in Table 3 

below.  

 
Table 3.: OLS Regression Output MLR models with HDD/CDD 

 

The results of the estimation show a causal linear positive relationship between the 

electricity load and the price at time t, while there is a negative relationship with the 24-hour 

average electricity price. In addition, the model suggests that during the weekend electricity 

load is decreasing (seasonal effect). Overall, 56,78% of the variance of electricity load can 

be predicted from the independent variables used, according to the R-squared statistic. The 

                                                                              

       _cons     9.602672   .0511542   187.72   0.000     9.502387    9.702956

       month    -.0360607   .0011562   -31.19   0.000    -.0383274    -.033794

       d_sun    -.1135582   .0056687   -20.03   0.000    -.1246714   -.1024451

       d_sat    -.0543751   .0056582    -9.61   0.000    -.0654677   -.0432825

       d_fri     .0299117   .0056311     5.31   0.000     .0188723    .0409512

      d_thur      .040418    .005607     7.21   0.000     .0294259    .0514102

       d_wed     .0431589      .0056     7.71   0.000     .0321804    .0541373

       d_tue     .0351896   .0056756     6.20   0.000      .024063    .0463162

       lncdd     .0886959   .0022402    39.59   0.000     .0843041    .0930877

       lnhdd    -.0461783   .0019224   -24.02   0.000     -.049947   -.0424095

    lnaver24    -.1620117   .0149977   -10.80   0.000    -.1914136   -.1326098

   lnDAPrice     .3697038   .0094241    39.23   0.000     .3512285    .3881792

                                                                              

     lnTload   Coefficient  Std. err.      t    P>|t|     [95% conf. interval]

                                                                              

       Total    130.095983     5,063  .025695434   Root MSE        =     .1055

                                                   Adj R-squared   =    0.5669

    Residual    56.2260521     5,052  .011129464   R-squared       =    0.5678

       Model    73.8699307        11  6.71544825   Prob > F        =    0.0000

                                                   F(11, 5052)     =    603.39

      Source         SS           df       MS      Number of obs   =     5,064
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F-statistic of 603,39 and the p-value of 0,00 suggests that we can reject the null hypothesis 

that the independent variables jointly do not predict the behavior of the dependent variable 

at 0,05% level of significance. Also, the p-values of the coefficients of each variable are 

suggesting that we can reject the null hypothesis that are not statistically significant at 0,05 

level of significance. Hence, the regression equation can be written as: 

 

𝐿𝑛𝑇𝑜𝑡𝑎𝑙𝐿𝑜𝑎𝑑𝑡 =       9,60 +  0,369 ∗ 𝐿𝑛𝑃𝑟𝑖𝑐𝑒𝐷𝐴𝑡 − 0,162 ∗ 𝐿𝑛𝐴𝑣𝑒𝑟24𝑃𝑟𝑖𝑐𝑒𝑡 −

0,0461 ∗ 𝐿𝑛𝐻𝐷𝐷𝑡 + 0,0351 ∗ 𝐿𝑛𝐶𝐷𝐷𝑡 + 0,0351 ∗ 𝐷𝑇𝑢𝑒𝑠𝑑𝑎𝑦 + 0,0431 ∗ 𝐷𝑊𝑒𝑑𝑛𝑒𝑠𝑑𝑎𝑦 +

0,044 ∗ 𝐷𝑇ℎ𝑢𝑟𝑠𝑑𝑎𝑦 + 0,0299 ∗ 𝐷𝐹𝑟𝑖𝑑𝑎𝑦 − 0,0543 ∗ 𝐷𝑆𝑎𝑡𝑢𝑟𝑑𝑎𝑦 − 0,113 ∗ 𝐷𝑆𝑢𝑛𝑑𝑎𝑦 −

0,036 ∗ 𝑀𝑜𝑛𝑡ℎ  

 

From the above estimation of the model, forecasts for the hourly total electricity load for the 

period 01/08/2019 00:00 to 31/08/2019 were produced and compared against the actual total 

electricity load. Plotting the forecasted and actual values of electricity load for August in 

Figure 6 below provide us with a first assessment of the forecasting ability of the model. 

 

Figure 6: Postestimation Forecasted and Actual Electricity Load for August 2019 

 

However, the above graph with the forecasts created by the estimation of the time series of 

hourly electricity load might appear that fits the actual data pattern on August, if we give a 
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closer look to specific single-hour we see contradicting results. For example, plotting the 

forecasts at 06:00, 09:00, 15:00 and 22:00 on August 2019 in the following Figure 7, reveals 

different forecast error behavior subject to the hour of the day.  

Figure 7: Hour Specific postestimation forecasts of the OLS model with HDD/CDD August 

 

Since we have enough data for rolling the estimation and forecast testing window, a second 

estimation of the parameters of the linear regression model from 01/01/2019 at 01:00 until 

31/08/2019 at 00:00 follows. The regression output from the statistical software is shown in 

the Table B1 in Appendix B. The relationships between the dependent and independent 

variables are similar with a small variation in the size of the estimated coefficients. The 

number of hourly observations is 5,807 and the R-squared is 0,5813. Again, the F-statistic 

of the model has a p-value of 0,000 mining that we have sufficient evidence to reject the 

null hypothesis that all the coefficients of the model are no-statistically significant. Also, the 

linear regression output for the coefficients of the model shows the same relationship 

between the dependent and independent variables as the previous estimation with the 

smaller sample.  

In terms of forecasting ability, the model is tested by creating forecasts for the period 

01/09/2019 00:00 until 31/09/2019 23:00 and tested with the actual values of electricity load 

observed during this period. In Graph A2 on Appendix A are plotted the actual and 
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forecasted values of electricity load. The forecasts on September show similar behavior with 

the previous model (as for specific hour every day) and larger forecast error compared. The 

forecasting accuracy metrics for August is a MAD of 2.062 MW and a MAPE of 7,04% 

while for September the MAD is 3.141 MW and the MAPE is 10,85%. We can conclude 

that the estimated model is exhibiting a similar relationship between the variables t the 

testing sample. 

 

MLR with Average Temperature as a variable for the weather effect on electricity load 

In the above estimations of the model, we modeled the effect of the weather conditions 

(variation in the temperature) in the electricity consumption using the Heating Degrees Day 

(HDD) and Cooling Degrees Day (CDD) following the non-linear causal relationship 

suggested in literature. However, we should examine if the average temperature has a linear 

effect on electricity consumption. Thus, in the regression model for the estimation window 

January-July we estimate the model by dropping from the analysis the HDD/CDD variables 

and using the hourly average temperature observed in Spain (natural logarithm). The 

regression output from the STATA statistical software is shown in Table 4. 

Table 4. Regression Output of OLS with average temperature as independent variable. 
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The R-squared statistic in the new linear regression estimation is 0,5442 showing that 

54,42% of the variance in electricity load is explained from the model independent variables. 

The model has smaller R-squared statistic from the previous one with a positive relationship 

between average temperature and electricity load. We can write the estimated model as: 

𝐿𝑛𝑇𝑜𝑡𝑎𝑙𝐿𝑜𝑎𝑑𝑡 =       8,887 +  0,366 ∗ 𝐿𝑛𝑃𝑟𝑖𝑐𝑒𝐷𝐴𝑡 − 0,092 ∗ 𝐿𝑛𝐴𝑣𝑒𝑟24𝑃𝑟𝑖𝑐𝑒𝑡 +  0,184 ∗

𝐿𝑛𝑡𝑒𝑚𝑝𝑡 + 0,03 ∗ 𝐷𝑇𝑢𝑒𝑠𝑑𝑎𝑦 + 0,040 ∗ 𝐷𝑊𝑒𝑑𝑛𝑒𝑠𝑑𝑎𝑦 + 0,040 ∗ 𝐷𝑇ℎ𝑢𝑟𝑠𝑑𝑎𝑦 + 0,031 ∗ 𝐷𝐹𝑟𝑖𝑑𝑎𝑦 −

0,056 ∗ 𝐷𝑆𝑎𝑡𝑢𝑟𝑑𝑎𝑦 − 0,111 ∗ 𝐷𝑆𝑢𝑛𝑑𝑎𝑦 − 0,042 ∗ 𝑀𝑜𝑛𝑡ℎ  

 

After the estimation of the parameters, we generate the out-of-sample forecasts for August 

2019 and we compare them against the actual observations. From even the simple plot we 

can see that this model produces less accurate forecasts compared with the model using the 

HDD and CDD as independent variables for the same period. In terms of forecasting 

accuracy metrics, we have a MAD of 3.120 MW and a MAPE of 10,29%. 

Figure 8: Postestimation Forecasts of Electricity Load on August 2019 Model 2 

 

MLR Model for each hour of the day 

As we observed in the above analysis, the multiple linear regression time series models 

using the hourly observations from 01 January 2019 01:00 until 31 July 2019 23:00 

produced forecasted electricity load values that exhibited an hour-specific forecasting error 
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variability. Thus, models that are taking into account the specific hour characteristics of 

electricity load are expected to perform better. From the two specifications examined, the 

model that included the HDD and CDD temperature variables performed better compared 

to the alternative model that used the average temperature in terms of R-squared value but 

also has lower MAD and MAPE in the forecast testing region. The model for i= 1, 2, ..,24 

takes the form as shown in the equation bellow: 

𝐿𝑛𝑇𝑜𝑡𝑎𝑙𝐿𝑜𝑎𝑑𝑖𝑡 =       𝛽0𝑖 +  𝛽1𝑖 ∗ 𝐿𝑛𝑃𝑟𝑖𝑐𝑒𝐷𝐴𝑖𝑡 +  𝛽2𝑖 ∗ 𝐿𝑛𝐴𝑣𝑒𝑟24𝑃𝑟𝑖𝑐𝑒𝑡𝑖 +  𝛽3𝑖 ∗

𝐿𝑛𝐻𝐷𝐷𝑡𝑖 + 𝛽4𝑖 ∗ 𝐿𝑛𝐶𝐷𝐷𝑡𝑖 + 𝛽5𝑖 ∗ 𝐷𝑇𝑢𝑒𝑠𝑑𝑎𝑦 + 𝛽6𝑖 ∗ 𝐷𝑊𝑒𝑑𝑛𝑒𝑠𝑑𝑎𝑦𝑡 + 𝛽7𝑖 ∗ 𝐷𝑇ℎ𝑢𝑟𝑠𝑑𝑎𝑦 +

𝛽8𝑖 ∗ 𝐷𝐹𝑟𝑖𝑑𝑎𝑦 +  𝛽9𝑖 ∗ 𝐷𝑆𝑎𝑡𝑢𝑟𝑑𝑎𝑦 + 𝛽10𝑖 ∗ 𝐷𝑆𝑢𝑛𝑑𝑎𝑦 +  𝛽11𝑖 ∗ 𝑀𝑜𝑛𝑡ℎ +  𝜀𝑡𝑖  

 

Following the similar procedure as above, we estimate the 24 different hourly models for 

the time period 01 January 2019 to 31 July 2019 using Ordinary Least Squares for each hour 

independently. In the table below, there are reported the overall model fit statistics. 

 

HOUR  NUMBER OF 
OBSERVATIONS 

F-TEST R-SQUARED ADJUSTED R-
SQUARED 

ROOT MSE 

1 211 16,57 0,4780 0,4492 0,06328 
2 211 14,40 0,4432 0,4125 0,05921 
3 211 15,10 0,4550 0,4249 0,05458 
4 211 18,03 0,4992 0,4715 0,05096 
5 211 23,06 0,5603 0,5360 0,04792 
6 211 37,42 0,6741 0,6561 0,04944 
7 211 59,18 0,7659 0,7529 0,05746 
8 211 81,22 0,8178 0,8078 0,06193 
9 211 94,67 0,8396 0,8307 0,05785 

10 211 109,59 0,8583 0,8505 0,04857 
11 211 104,28 0,8522 0,8440 0,04599 
12 211 91,27 0,8346 0,8254 0,04761 
13 211 70,74 0,7964 0,7851 0,05205 
14 211 50,65 0,7368 0,7223 0,05903 
15 211 45,71 0,7164 0,7008 0,06338 
16 211 49,06 0,7306 0,7157 0,06594 
17 211 60,57 0,7700 0,7573 0,06275 
18 211 96,94 0,8427 0,8340 0,05103 
19 211 89,07 0,8312 0,8218 0,05264 
20 211 101,8 0,8491 0,8408 0,04712 
21 211 141,7 0,8868 0,8805 0,03571 
22 211 97,39 0,8433 0,8347 0,04135 
23 211 41,00 0,6938 0,6769 0,05728 
24 211 25,74 0,5872 0,5644 0,05922 

Table 5: Test Statistics for each OLS estimated Hourly Equation  
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The F-value in all models provided evidence allowing us to reject the null hypothesis that 

the independent variables do not reliably predict the behavior of the response variable 

(electricity load) at α=5% level of significance. The individual hypothesis testing for the 

significance of the estimated coefficients of each variable varied within each model. As we 

seen from Table 5 above, the estimated linear regression model for 10:00, 11:00 and 21:00 

exhibit an R-squared values suggesting that more than 85% of the variance in electricity 

load can be predicted by the independent variables included. 

After the estimation of the 24 linear equations, post-estimation forecasts were extracted for 

the month of August. In Table 6 below are presented the forecasting accuracy metrics for 

each equation. As we observe, the models have a MAPE considerably lower than the single 

equation model using all the hourly observations of the variables. The overall average 

MAPE for August 2019 from the 24 equations is 3,84%. 

  

HOUR MAD MSE MAPE 

1 1113,22 1596882,83 4,44% 

2 869,98 1111467,62 3,64% 

3 659,34 566895,06 2,84% 

4 587,57 471766,54 2,58% 

5 487,80 395318,23 2,15% 

6 773,63 1268501,66 3,25% 

7 972,85 2258561,57 3,93% 

8 1208,31 2498519,14 4,63% 

9 820,36 2142644,83 2,94% 

10 881,48 2182381,04 3,02% 

11 981,23 2027852,40 3,15% 

12 1190,71 2452962,87 3,64% 

13 1353,00 2743570,91 4,05% 

14 1961,03 4652071,18 5,90% 

15 1845,17 4217468,21 5,68% 

16 1727,63 3820210,57 5,41% 

17 1480,15 3049431,18 4,72% 

18 1086,27 2028323,08 3,57% 

19 966,36 1583011,67 3,23% 

20 904,03 1316571,06 3,05% 

21 1229,32 1998831,18 3,95% 

22 1007,19 1621100,91 3,38% 

23 1351,33 2393769,58 4,81% 

24 1072,73 1994124,18 4,08% 

Table 6: Forecast Accuracy Metrics for Each Hourly estimation of Model 1 
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Plotting the out-of-sample forecasted value of electricity load at specific hours during 

August 2019 (as we did in the single equation estimation above) for comparison are 

presented in Figure 9 below. The forecasts of electricity load at 6:00 (from Equation 6), at 

09:00 (from Equation 9), at 15:00 (from Equation 15) and at 22:00 (from Equation 22) are 

produced from the statistical software. Clearly, compared with Figure 7 we can see that the 

distance between the forecast electricity load and the actual electricity load lines are smaller 

(smaller forecast error). Also, the forecasts are following closer the time series patterns of 

the actual observations compared to the multiple linear regression model of the whole hourly 

range.   

Figure 9: Forecasts of Electricity Load at Different hours 

 
Examining again the alternative model for the climate effect as we did in the single equation 

analysis, the 24-hour single regression equations using as an independent variable the 

average hourly temperature instead of the HDD and CDD produced the following overall 

model fit statistics presented in Table 10 below. As we expected, the single equation models 

provided different results depending on the hour of the day. For example, at 09:00 the 

regression output suggests that 80% of the variance of the response variable (electricity 

load) can be predicted from the independent variables. However, overall, the models have 

lower R-squared values and higher Root Mean Squared Error comparing with the other 24 
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Multivariate Linear Regression equations provided clearly evidence that the first should be 

preferred.  

 

HOUR  F-TEST R-SQUARED ADJUSTED R-SQUARED ROOT MSE 

1 17,47 0,4662 0,4395 0,06383 

2 15,57 0,4378 0,4097 0,05935 

3 16,5 0,4521 0,4247 0,05459 

4 19,37 0,4920 0,4666 0,05120 

5 24,48 0,5504 0,5279 0,04834 

6 42,09 0,6779 0,6618 0,04903 

7 66,75 0,7694 0,7579 0,05688 

8 85,5 0,8104 0,8010 0,06302 

9 87,16 0,8131 0,8040 0,06224 

10 73,26 0,7855 0,7748 0,05961 

11 58,11 0,7439 0,7311 0,06038 

12 46,66 0,7000 0,6849 0,06397 

13 40,12 0,6673 0,6507 0,06636 

14 31,27 0,6099 0,5904 0,07168 

15 28,16 0,5847 0,5639 0,07651 

16 30,86 0,6068 0,5871 0,79470 

17 32,79 0,6211 0,6022 0,08034 

18 36,68 0,6471 0,6295 0,07624 

19 46,72 0,7002 0,6852 0,06997 

20 44,97 0,6921 0,6768 0,06714 

21 44,35 0,6892 0,6737 0,05902 

22 32,03 0,6156 0,5964 0,06461 

23 25,4 0,5595 0,5375 0,06853 

24 19,29 0,4909 0,4655 0,06560 

Table 7: Regression Statistics of each OLS estimated hourly equation Model 2 

  

4.2.2 Time Series Panel Data Analysis 

As we highlighted in the time series analysis and the simple regression using the whole 

hourly observation data set, the electricity load does not follow exactly a time series process 

since different hour within the day have different characteristics. Thus, the electricity load 

can be seen as 24 different time series. In this case, estimation of the linear relationship 

between the dependent variable and the independent variables could be made through panel 

data analysis which allows each hour of the day to be a separate time series. Also, panel data 

time series analysis examines the dynamic relationship between the variables by fitting the 

fixed-effects or random effects instead of separated OLS as we did in the section above.  
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The dependent variable is the total electricity load (natural logarithmic value) and the set of 

independent variables used are the natural logarithm of the day ahead price, the average 

24hour price, the weather variables (Heating Degrees Days and Cooling Degrees Day) and 

the dummies used for modeling the seasonality effect. The panel time series is unbalanced 

since its missing one value of the average 24hour price from each panel. Balancing the panel 

by dropping the observations of the first day of the year and performing the Hausman 

specification test, the p-value suggests fitting a fixed effects model. The estimation results 

for the same choice of variables with the simple linear regression above from 02.01.2019 

until 31.07.2019 are presented in the next table. 

Table 8. Panel Data Regression Output (Fixed-Effects) 

 

F test that all u_i=0: F(23, 5028) = 300.87                  Prob > F = 0.0000

                                                                              

         rho    .72189276   (fraction of variance due to u_i)

     sigma_e    .06859921

     sigma_u    .11052215

                                                                              

       _cons      9.35217   .0337903   276.77   0.000     9.285926    9.418413

       month    -.0038553   .0009365    -4.12   0.000    -.0056912   -.0020193

       d_sun    -.1342004   .0037007   -36.26   0.000    -.1414555   -.1269454

       d_sat    -.0789016   .0036937   -21.36   0.000    -.0861428   -.0716604

       d_fri     .0152723   .0036664     4.17   0.000     .0080846      .02246

      d_thur     .0261684   .0036507     7.17   0.000     .0190115    .0333253

       d_wed     .0254683   .0036511     6.98   0.000     .0183105    .0326261

       d_tue     .0194727   .0036961     5.27   0.000     .0122267    .0267188

    lnaver24     .0985795   .0103083     9.56   0.000     .0783708    .1187883

       lncdd     .0364919   .0017111    21.33   0.000     .0331375    .0398464

       lnhdd     .0185341   .0016728    11.08   0.000     .0152548    .0218134

   lnDAPrice     .1341006    .006992    19.18   0.000     .1203933    .1478079

                                                                              

     lnTload   Coefficient  Std. err.      t    P>|t|     [95% conf. interval]

                                                                              

corr(u_i, Xb) = 0.1099                          Prob > F          =     0.0000

                                                F(11, 5028)       =     700.37

     Overall = 0.3680                                         max =        211

     Between = 0.7578                                         avg =      211.0

     Within  = 0.6051                                         min =        210

R-squared:                                      Obs per group:

Group variable: hour                            Number of groups  =         24

Fixed-effects (within) regression               Number of obs     =      5,063
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After the estimation of the parameters for the 24-hourly clusters, we can produce the 

forecasts for the August 2019. A visual representation of the forecasts of electricity load and 

the actual observations from the historical data are presented in the next graphs. 

Figure 10: Postestimation forecasts of the Panel Data 

 
Similarly, the panel model described above is estimated for the same period using instead 

of the Heating Degrees Day and Cooling Degrees Day non-linear realization of temperature 

conditions, the hourly average temperature (natural logarithm). Again, forecasts are created 

for model comparison in Forecasting Accuracy section.  

4.3 Forecasting Accuracy Comparison  

In the previous section we developed several different models for analyzing the behavior of 

electricity load in Spain using hourly observations. We used the first 7 months of the 

observations to calibrate the models and in turn we created the electricity load forecasts for 

August. The next step in forecasting methodology is comparing models’ forecasting 

accuracy by calculating the forecast error from the historical observations of electricity load 

on August. A first comment for each model forecasting behavior was made in the previous 

sections from the graphical representation of actual and forecasted values of electricity load.  
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4.3.1 Simple Moving Average Models 

The first forecasting methods that are examined are the simple moving average models. The 

first SMA that calculated from the whole data set of hourly electricity load used the previous 

12, 24, 36, 48, 72 and 96 observations. The SMA that calculated for the specific hour at each 

day used the previous 2, 3, 4, 5 and 6 previous hourly observation of electricity load. Among 

the eleven SMA according to the Mean Absolute Deviation (MAD) forecasting accuracy 

metric, the smaller value is reported from the SMA(6) calculated from the same hour 

observed electricity load. In addition, all the SMA models calculated from previous specific 

hour averages performed better compared to the SMA calculated from the whole set of 

hourly observations.  

4.3.2 Multiple Regression Models 

The second forecasting method that was examined in results was the simple regression of 

the hourly electricity load observations. Two different regression models were estimated 

with the key difference between the two models being the temperature variable (HDD and 

CDD in the one model and average hourly temperature in the other). The models were 

estimated for the period 01/01/2019 01:00 to 31/07/2019 24:00 and then forecasts were 

created for August 2019. The model with the smaller MAD of 2.075,108 was the model with 

the model that were using the non-linear temperatures of HDD and CDD. The model using 

the average hourly temperature created forecasts that gave a MAD of 3.135,17. The Mean 

Absolute Percentage Error of the regression model using HDD/CDD in the independent 

variables was 7,06%, while the alternative model tested exhibit a MAPE of 10,31%. 

4.3.3 Panel Time Series Models 

Two versions of panel data were examined, one with the inclusion of the hourly average 

temperature as independent variable and one with the inclusion of Heating Degree Days and 

Cooling Degrees Day. Forecasts were created from the estimated models from historical 

data from 02.01.2019 to 31.07.2019 with hourly clusters and compared against the actual 

electricity load observations on August (forecasting window of historical data). Again, the 

model that used the HDD/CDD temperature variable created better forecasts in terms of 

MAD and MAPE criteria. The MAD for the model was 2.540,4 against the second that had 

a MAD of 3.476,86 (MAPE of 8,7% and 12,09% accordingly for each model). Interesting 
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in the comparison between the regression models is that the pane data approach produced 

post estimation forecasts that lack against the simple multivariate regression models.  

 
 

5. Conclusions 

Nowadays, energy consumption and especially electricity consumption is important for 

economic activity and household everyday life since the expansion of technology has 

created many devices that operate only with electricity. The importance of securing the 

efficiency and reducing operational risk of the electricity grid has been cited from the 

academic literature, market experts and policy makers. Forecasting the electricity 

consumption has become crucial for the designing of long-term energy policies and the 

continuous decarbonization of global energy mix. As the integration of renewable sources 

of energy such as solar and wind power will continue to grow contributing in the 

decarbonization of the European energy mix, efficient electricity load models should take 

into consideration the intermitted and uncertain nature of renewable sources of energy. Thus, 

models that incorporate different weather data (such as temperature, solar radiation and wind 

speed) together with electricity generation capacity forecasts could improve electricity load 

forecasting accuracy. In addition, from a corporate point of view accurate electricity load 

forecasting is important for the maximization of the profitability of energy generation 

companies and distribution companies. Lately, the expansion of smart meters in households 

provides the opportunity of scheduling their electricity consumption for economically 

benefit of low-price periods. 

The vast amount of research on forecasting methodology and the modern computational and 

statistical power are making electricity load forecasting more feasible. In this thesis, a 

categorization and presentation of the most used forecasting models was made. Instead of 

trying to develop a more complicated and sophisticated forecasting model, we tried to 

examine how simpler models are capturing the behavior of electricity load and could provide 

a reliable short-term forecast. Temperature effects were examined with a linear and a non-

linear specification. Regression models appeared to perform well based on overall goodness 

of fit while the test hypothesis of the parameters showed that there is a causal relationship 

between electricity load, average price and temperature. In addition, the effect of 

temperature from the comparison of the R-squared of the two models appears to be non-
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linear (models that have as explanatory variables the HDD and CDD variables exhibited 

better estimation results and better forecast accuracy metrics in the postestimation part of 

the sample). However, the different behavior of electricity load at specific hours of the day 

suggests that models that take into account those different characteristics should be 

preferred. 

In this dissertation, the econometric models examined appeared to perform well in creating 

short-term predicted electricity load values. However, there is a limitation in adopting such 

methodology for predicting the future of variables, since it requires information that is not 

available at the time that the forecast is being made. On the other hand, time series models 

such as the SMA and Autoregressive models could be used for creating forecasts since they 

use only the previous information inherited in the time series process of electricity load. The 

forecast of electricity load using the 168 previous hourly observations (SMA(168) or 7-day 

hourly observation) presented a MAPE at around 9% which is considered as a good score. 

A similar performance with a MAPE of 7% we observed with the SARIMA(2,0,2,12) model 

arguing that autoregressive models could provide a reliable and fast solution for short term 

electricity load forecasting.    

As modern technology and artificial intelligence are increasing the computational 

capabilities of statistical software and make their use easier even for no-experts in 

econometrics, models that are combining the causal relationship between variables and time 

series properties should be examined. Models that offer the ability to capture non-linear 

dynamic relationships among variables, the memory of time series processes and have the 

ability to learn such as neural networks and artificial neural networks could capture the 

mechanisms of energy markets and create accurate forecasts.  

Advanced machine learning techniques give the opportunity to researchers to apply 

advanced learning algorithms such as deep and reinformed learning to improve forecasting 

efficiency of electricity load and energy models. The expansion of the smart grid that offers 

real time and high-resolution electricity load data gained from the smart meters and Internet 

of Things (IoT) devices connected in the electricity grid offers opportunities for the adoption 

of Big Data Analytics techniques in electricity load modeling, leveraging to an extend the 

forecast error. The vast number of models in academic literature as also those examined in 

this dissertation are using historical electricity load and other variables data to generate 

forecasts for future periods. Big Data Analytics and real time availability of electricity data 
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are offering a promising area for future research in adaptive real-time electricity load 

forecasting for supporting dynamic decision making.   
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Appendix A: Graphs 

Graph A.1. SMA Forecast Plots at Specific Hour 

 
Graph A.2. Regression Forecasts for September 2019 
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Graph A.3. ACF and PACF for ln(Electricity Load) 

 
 
Graph A.4. SARIMA(2,0,2,12) Electricity Load Forecast 
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Appendix B: Statistical Analysis Output 

B1 Table: Regression Output from hourly observation sample until 31 August 2019 
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