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Abstract

One of the most important factors for economic and social development is energy
availability, since different forms of energy are used for manufacturing, transportation,
electricity generation and heating. In academic literature, electricity is cited as the form of
energy that has penetrated the most in almost all aspects of modern life, being essential non
only for commercial uses but also for residential uses. During the last couple of years, the
significant supply chains disruptions in the international energy markets of crude oil and
natural gas, caused by the Russia-Ukraine military conflict, created significant variations in
the electricity markets and ignited the interest for examining the security of the electricity
grids. An essential part of the academic research focuses on research about electricity load
demand and forecasting of electricity load as it enables the design of immediate and efficient
responses in demand variation. Increasing electricity demand requires the availability of raw
energy sources as well as the good operation of the electricity grid, while period of low
electricity demand should be matched with decreasing electricity production for reducing
production costs. The majority of existing models for electricity modeling and forecasting
in literature are characterized by increasing complexity making their use from policy makers
and market experts difficult. The purpose of this postgraduate thesis is to examine the
statistical behavior of the suggested electricity load models, examine their out of sample
forecasting capabilities and performance. The models that will be examined in this
dissertation are estimated using hourly observations for electricity load, day-ahead price and
temperature in Spain during 2019. Postestimation assessment and comparison of the

examined models will be conducted with the use of forecasting accuracy metrics.

Keywords: Electricity load modeling, forecasting, regression models, time series analysis.
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“Avéivon Xpovoocelpnv Zntong Hiextpiknc Evépyeiag”

I'epacipog Mvérog

Iepiinyn

"Evog and toug onuavtikdtepovg mopdyovteg yio TV OIKOVOUIKT KOl KOIVOVIKT oVATTLUEN
evog kpdrtovg givat 1 dabeciudtnta evépyelog KaBmG dLoPOPETIKEG LOPPES EVEPYELOG Elval
amopoitnTeG 0TV frounyovia, TG LETOPOPES, TNV TAPUYWYN NAEKTPIKNG EVEPYELNS KOOGS
Kot v v 0éppaven. Xy akadnuaikn BiAtoypagio, 1 NAEKTPIKN EVEPYELD AVOQEPETAL
WG M HOPON EVEPYELNG TTOV £)EL JIEIGOVOEL TEPIOTOTEPO GE GYEGOV OAOVG TOVG TOUEIS TNG
KaOnpepvottog, Kot givarl amapaitntn oyt uévo yio v ypnon g omd mv Propnyavio
oAAG Kot Yo Tig kafnpepvég avdykeg tv vowokvpldv. Ta tedevtaion dvo ypdvia, ot
ONUOVTIKEG O0TOPAYEG OTIC EPOOINCTIKEG OALGIOEC EVEPYELNG OTIG AYOPES OPYOL
TETPELOIOV Kol PLGIKOV aEPIOL TOVL TPOKANONKAY OO TNV GTPATIVTIKY GUYKPOLOT HETAED
Poocioc kot Ovkpaviag, dSNpodpyncov oNUOVTIKESG SIUKVUAVOELS GTNV Ayopd NAEKTPIKNG
evépyelog kot avafépuovay Tov eVOPEPOV YloL TNV €PELVA TNG OLCPIAONG NG
otafepdtnTag 0TV Agttovpyio TOL SIKTVOV NAEKTPIKNG evépyetlas. 'Eva peydio pépog g
KOO ILOTKNG EPEVVOG ETIKEVTPAOVETOL GTNV HEAETN TNG {NTNONG Y10 NAEKTPIKN EVEPYELD KO
™V TPOPAEYN TNG LEAAOVTIKTG TG KOTAVAAMONG TPOKEUEVOL VO S1ACPAAOTEL 1| KAALYN
™e pHeTafoing TS HEG® TOV GYESGHOD OMOTEAEGUOTIKOV EVEPYELNKAOV TOMTIKOV. H
avEnon g {NNoNG Yo NAEKTPIKY evEPYELD amantel TV SBEGILOTNTO TOV TPOTOV TNYDOV
EVEPYELOG TTOV YPTCLUOTOIOVVTOAL GTNV TTOPOY®YNS NG, KaBmG kot tnv €0pulun Acttovpyia
TOV OIKTVLOV JLOVOUNG NAEKTPIKTG evEpyelag. Mia mepiodog pe younir (ntnon NAEKTPIKNG
evépyelog Oa mpémel vo cuVOLOOTEL [E pPelmon NG Topay®YNS MAEKTPIKNG EVEPYELOG
TPOKEWEVOD Vo, LEL®OET TO KOGTOG AEITOVPYING TV CTAOUDV TOPAYM®YNG EVD Lo TEPT0J0G
vynAng {ong mpénetl va. cuvodedeTan e avénon g tpoceopds. H mhielovotnrag tov
HOVTEL®V TTOL cuvovTtdpe otnv BipAoypagio yio TV €£€T00M TS CLUTEPIPOPAS OALA Kol
v TpOPAeym g CTNOoNG Yo NAEKTPIKT evEpPyeLa yapaKkTnpiletol amd povtéda avénuévng
TOAVTAOKOTNTOG, KAOIGTMOVTAG SVGKOAN TV YPNCUYLOTOINCT| TOVS Ao TIG PLOUGTIKES apyES

KaB®OG KOl TOVG GUUUETEXOVTEG GTNV AyOPdl. XKOTOG TNG TOPOVCOG LETATTVUYLOKNG S10TPPNG
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etvat 1 €€€T00M TG OTATIGTIKNG GLUTEPIPOPAS TOV TPOTEWVOUEVODV amd TV BipAoypaeia
povtéAwv (ong MAEKTPIKNG evépyslog KaBdg kot mn €€€tacn NG KavOTNTAG TOV
HOVTEL®V oT®V Vo eEAyouv TpoPAEYeElS Yoo TNV HeALoVTIKY (Rtnor amd to delyua Tov
napatnprioemv. Ot petafintéc tov poviédmv mov Ba ypnoorombovv oty mopodoa
petamtuylokn epyocio Bo extiumBovv pe v ypnomn oploiov Sedouévov KatavaA®mong
niextpikng evépyelac, Ty day-ahead xoi Oepuokpaciog yio v lomovia katd v
dwapkewn Tov €tovg 2019. Ta e€etaldpeva poviéha {RTNoNe MAEKTPIKNG evépyelog Oa
oLYKp1BoHV peTa&b TOVE He TNV xpHon dekT®dV akpifeiag mpdPreyng (forecasting accuracy

metrics).

AgEeig — Kheong

Movtého {Rtmong nAekTpikng evépyslog, Bempeia TpoPréwemvy, HOVTELN TAAVOPOUNOTG,

avEALGN YPOVOCEPDOV.
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1. Introduction

Modern developed and developing economies and societies are relying heavily in energy
consumption for the majority of production activities and almost for every daily living
activity. The most common energy form that is used in production of several commodities
as well as for common residential purposes such as cooking, lighting and heating; is
electricity. As the global population is expected to continue the increasing trend during the
next years; the demand and use of electricity is also expected to follow a similar increasing

trend.

Electricity is distinguished from the other forms of energy in the sense that is derived by
other primary sources of energy such as coal, natural gas, nuclear, geothermal, hydropower,
photovoltaics, and wind turbines. The two unique characteristics of electricity are that it is
a just-in-time form of energy (since there is no delay between electricity generation in the
production facilities and electricity consumption by the final consumer), and that electricity
with the existing technology cannot be stored in significant quantities for future use (no
ability for inventory building). Traditionally electricity is generated in production
generation facilities where primary energy sources such as carbon, natural gas, and nuclear
energy are burned to create heat that in turn is used for heating water. The heated water in
turn produces high pressured steam that moves the blades of a turbine, and consequently

generates electricity.

Electricity eventually is supplied into the electricity grid and is distributed to the final
consumer. The greatest share of electricity generation nowadays is derived by energy
sources that are exhausting (coal, natural gas, uranium) and their use has significant
environmental consequences. As the power stations are using primary energy sources as
fuel for the electricity generation turbines and there is time needed for powering up
additional turbines, the management of electricity demand and supply is crucial for
decreasing operational and environmental costs (Sadler, 2022). Electricity power stations
are usually located far from the final consumer since they usually located near the primary
sources of energy. From the production facilities to the final consumer, electricity is
transmitted and distributed through the electricity grid of a country. The electricity grid is

the interconnected system of operating and back up electricity generation plants, electricity
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transmission substations, transmission lines able to transfer high voltage electricity, local
electricity substations that are transforming high voltage electricity to lower for being able
to be used by the final customers through distribution lines. In addition, there are several
smaller electricity grids or micro-grids that are connected in the national electricity grid such
as regional grids, community grids, university campus grids or even industrial area grids
(Sadler, 2022).

Each final user in the electricity system removes electrical power for operating business or
residential machines. This electricity removed from the grid is called electricity load or
electricity demand. The electricity demand has significant variations during a day or a week
or even a whole year since there are different factors affecting the final consumer on using
electrical devices. Electricity generation facilities are feeding the system with always with
a minimum level of electricity, the base load, while they implement additional resources for
facing periods of increased demand (high peak load). Nowadays, the electricity generation
facilities are large investment projects since they use natural gas and nuclear power as a
fuel, providing the base load electricity in the grid while there are several back-up electricity
generation facilities that operate during peak times. The back-up generation plants require
significant resources for powering up and starting generating electricity, adding significant
cost in the additional high peak load. The optimal operation of the electricity grid requires
taking decisions about the efficient allocation of energy resources and reducing electricity
generation costs. Important role in decision making in electricity generation and distribution
plays the understanding and forecasting the electricity load. Knowing the periods of low
electricity demand could allow periodical shut down of generation plants for maintenance
or security assessment, while knowing the periods of high electricity demand allows the on-
time operation of back-up units, the scheduling of resources or increasing the generation
capacity with renewable sources of energy. Understanding and forecasting electricity load
plays an important role in the liberalized competitive electricity markets not only because
ensures the system stability but also affects the decisions for expansion possibilities,
changes in companies’ market shares, and create profits from trading excess electricity

capacity in near countries through the interconnection of grids.

Forecasting techniques and models are being used extensively in academic literature in

many areas. In economics and finance, forecasting models have been designed in predicting
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inflation, exchange rates and the future behavior of macroeconomic variables. In supply
chain management forecasting has been used in inventory management and demand
prediction, while forecasting methodology has also been used outside the area of business
and economy, such as medicine. In electricity load forecasting there are several different
methodologies and forecasting horizons developed without a clear consensus about the
forecasting superiority of a model or forecasting accuracy of complex modeling. The models
developed in academic literature range from traditional causal relationship models such as
regression and multiple regression models, time series models, exponential smoothing,

artificial neural networks, and fuzzy logic models.

Developing complex models with the use of many different variables has not provide
evidence of a better understanding of the behavior of electricity demand or producing more
accurate forecasts compared to more simple models. This thesis will try to understand the
electricity load behavior by focusing in simple econometric and time series techniques. The
research question is how simple models that could be used by a broad range of users such
as market experts and policy makers capture the behavior of electricity load. In addition,
can these models produce reliable forecasts in the short-term using real data for Spain? The
structure of the thesis is organized as: Chapter 2 Literature Review provides a brief review
of existing literature on energy and electricity forecasting, Chapter 3 Methodology presents
the different models and the data that will be used in the analysis, and Chapter 4 Conclusion

will discuss the statistical results, accuracy measures and concluding remarks.
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2. Literature Review

2.1 The Spanish Electricity Market

The Spanish electricity market has been subject to continuous transformation since the early
20th century, not only in the regulation that govern it but also in the energy mix used for
electricity production. In addition, different social and economic events such as the period
of the Spanish Civil war, the European deregulation of electricity markets, the economic
and oil crises during the 1970s affected the energy decisions about electricity generation

through the years (Chaparro-Pelaez et al., 2020).

The electricity market in Spain before the 1997 was regulated by the Ministry of Industry
and Energy which was setting the electricity prices in an effort to achieve efficiency in
electricity market and financial stabilization. The State through the state-owned company
Red Electrica de Espana was controlling the electricity system and transmission network. In
electricity generation side there was not competition present and electricity generation was
made from a couple of fully integrated private-owned companies. The generation capacity
of each company and electricity generation station was known and the risk was significant
low. The principle of price formation in state regulated electricity markets was the profit
maximization by taking into account the investment required and the operational costs from
electricity generation and distribution. The Spanish State, thus, was setting the electricity
tariff and was controlling the efficient allocation of energy resources and investment

allowances (Chaparro-Pelaez et al., 2020).

The Spanish energy mix during this period included coal and hydropower energy sources as
the largest shares used for the electricity generation. Coal was the dominant energy fuel
during this period since Spain, as the majority of European countries, had not any oil and
gas reserves and hydropower had volatility in generation capacity due to weather conditions
and especially long dry periods during summer. Also, the oil crises during the 1970s together
with the growing electricity demand affected the government decisions in the electricity
market in an attempt to increase capacity through investments in additional coal burning and

nuclear plants.
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The liberalization of the Spanish electricity market started in 1994 with the creation of a
regulatory and transparency commission for the entire electricity system, and was concluded
in 1997 with the adoption of the European Directive about electricity markets. State
intervention in the electricity supply is not anymore needed since the basic principle dictates
that competition among the existing companies and the companies that are free to enter in
the market would result to the efficient match of supply and demand, stimulate technological
innovation and promote efficiency of new investment decisions. Adding to the changes in
the regulation of the electricity market, significant changes observed also in the Spanish
energy mix. The environmental consequences of coal burning power plants, European
policies to reduce the CO2 emissions, and the introduction of combined heat and power
(CHP) using natural gas as energy fuel changed the primary energy sources included in the
Spanish energy mix. In the energy mix there is an increasing share of renewable sources of
energy due to the cost decrease and competitiveness of wind turbines and photovoltaics.
Nowadays, the electricity generation in Spain is derived mainly from the use of natural gas
fueled generation facilities, nuclear plants, hydropower plants and renewable sources of
energy while the existed coal-burning power plants are operating during periods of high

electricity demand as a back-up plan.

Spain is one of the largest European countries in terms of population and electricity
consumption. The electricity demand in the country shows significant variation due to
different weather conditions that are observed during the year (Moral-Carcedo & Vicéns-
Otero, 2005). A large percentage of the Spanish residential population has not heating
utilities that operate with natural gas or oil, having as a result the use of electricity for heating
systems such as radiators and electricity heat pumps (Blazquez et al., 2012). As population
in Spain has been constantly growing, the electricity demand has also been increasing. This
increasing electricity demand in the country raises concerns not only for the increasing
emissions into the environment from the power plant facilities, but also about the energy
security and autarchy of the country. Disruptions in the availability of electricity could affect
negatively the industrial production and economic growth of the country. In addition, excess
electricity demand according to the economic theory has as a consequence high electricity

prices, which in turn affect key macroeconomic indicators and household incomes.
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Electricity nowadays is viewed as a commodity that is also traded in a similar way with the
other traditional commodities in organized markets, the Power Exchange Market. The
market liberalization of the electricity market led in the competition of mainly two large
private-owned companies, Endesa and Iberdrola that generate the majority of electricity
capacity and few smaller private-owned competitive companies, Gas Natural Fenosa, EGL,
EDP Hidrocantabrico Energia, and Acciona. Electricity price formation is set every day in
the Power Exchange, an organized market in which electricity producers and electricity
purchasers are negotiating different selling and buying prices. The electricity power
exchange is settling the hourly prices of electricity and the respective quantities of electricity
sold and bought at that price level. The auctions in the daily power exchange are settled by
the market operator. The operator is matching the selling and buying orders, calculates the
marginal electricity price, distributes the generation and demand share among the
participating agents, and examines different technical restrictions in the production or
transmission of electricity. The difference of electricity power exchange with other
commodity organized markets is that prices are set for the next day of the occurrence of the
negotiations (day a-head prices). Obviously, there is risk inherited in the process since
different events could occur affecting the generation facilities or the transmission lines,

creating supply disruptions in electricity supply chain.

2.2 Forecasting in Electricity Markets

During the last decades, there are several researches and concerns about energy management
since the availability of energy resources is decreasing and several actions have been taken
for the decarbonization of the national energy mixes. Electricity is generated through the
use of other energy sources with carbon being constantly replaced from other alternative
fuels with less CO2 emissions. However, the availability of electricity generated by
hydropower, wind farms, and photovoltaics is subject to the weather conditions and cannot
reliably face unanticipated peak electricity load periods. Also, natural gas and nuclear plants
dependent on energy fuels that their reserves are decreasing and their prices exhibit
significant volatility. Electricity capacity is, thus, dependent in the availability of energy
sources and the risk of supply chain disruptions in the value chains of those energy sources

could affect the stability of the whole electricity power system.
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The disruptions in the supply of energy fuels such as natural gas (for natural gas electric
generation plants), Uranium (for nuclear electricity generation plants) or the unavailability
of water resources (for hydropower generation stations) and the dependance of renewable
sources of energy in weather conditions, are not the only unforeseen events that could create
disruption in electricity systems. Significant risk is also inherited in the physical
infrastructure of the electric grid. Possible breakdowns in the step-up or step-down voltages
substations, load imbalances that could create a black out in the whole system, or damages

in the transmission cables create threats in the optimal power system operations.

An important difference between electricity and other sources of energy or other
commodities is that electricity is a just-in-time form of energy since the electricity
generation plants create electricity, simultaneously fed into the electricity grid and
consumed by the final residential, industrial and commercial user. This property of
electricity of non-storage availability and inventory building for future use does not allow
an easy solution in the problems mentioned above. In general terms, electricity demand
presents strong seasonal variation since there are periods of significant low electricity load
and periods of peak electricity load. Electricity generation plants feed constantly the system
with the minimum electricity necessary. However, there are periods during a day that
additional utilities are operating for matching increased electricity demand by feeding
additional load in the system (intermediate load). The efficiency of the system is tested
during small periods of time when sudden demand increases require the operation of back-
up electricity power generation facilities since the base and intermediate load suppliers
cannot face the peak electricity load. In the other hand, oversupplying the system with
electricity load creates significant operational costs and wastes of energy fuel resources.
Thus, efficiency and optimal operation of the electricity grid requires a matching in the

electricity generation with the electricity load.

Electricity demand forecasting plays an important role in the electricity supply and demand
management for all the agents that participate in the electricity market. Available
information about the electricity load behavior and forecasted electricity load allows the
electricity generation facilities (supply side) to efficient allocate their resources and
minimize operational costs. Electricity generation facilities can efficiently schedule their
power generation from the available energy sources, reduce the cost from the wastage

energy source consumption, take advantages of periods when there is increased electricity
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generation from renewable sources of energy and ensuring a reliable electricity supply in
the grid. In addition, accurate forecasts allow the electricity system operator to change the

electricity generation to match the forecasted demand (secondary regulation system).

Accurate load forecasts are beneficial not only for the electricity generation companies and
system operators, but also for policy makers and distributors of electricity. Long-term
forecasts about electricity demand allow the policy makers to take decisions for supporting
additional investment on production capacities or about the energy mix of the country in the
short-term or in the long-term. Periodic maintenance of production facilities or transmission
facilities can be performed without creating disruptions in the grid with the use of electricity
load forecasts. Forecasting electricity load provides information about potential expansion
of the electric grid or creating additional substations. Electricity modelling and forecasting
could provide valuable information to electricity grid operators and distributors for the
effective and resilient grid operation. The continuous monitoring of electricity load pattern
and the behavior of the factors that affect electricity consumption allows the grid operators
to detect anomalies in the electricity grid, identify potential problems and take precaution
measures for preventing blackouts, brownouts and electricity supply disruptions. Another
important application of forecasting methodology in electricity markets is on the side of
electricity price. Accurate forecasts about the wholesale electricity price could provide a
significant benefit for mitigating uncertainty and risk on generation production companies

(Lindberg et al., 2019).

Significant academic research has been devoted also in the electricity price modeling and
forecasting. As the electricity production companies are participating in a market where
electricity prices and electricity production quantities are being settled for the next day,
mitigating the operational risk needs being able to forecast the electricity price. Electricity
load and price forecasting plays an important role in electricity Power Exchange since it
enables all the participant in the market to make informed decisions about buying and selling
electricity in the spot and future market. Electricity prices present similar seasonal variation
due to the variation of electricity load (according to the law of demand and supply), variation
in the economic activity (working days and weekends), and regional climate factors. In
addition, the time series process of electricity prices exhibits several spikes, negative values

and long memory (Seitaridis et al., 2021). Accurate forecasts allow the optimization of

Postgraduate Dissertation 8



m OPEN Gerasimos Minetos, Time Series Analysis of Electricity Demand.

UNIVERSITY

market participants’ portfolio, the efficient management of risk in electricity trading markets

and profit maximization.

2.3 Overview of Electricity Load Models

Forecasting or predicting the future values of behavior has been applied in a wide range of
human interests. Among the first forecasting attempts that are cited are the weather
prediction, dating back millennials in Ancient Greece and more formally weather
forecasting research during the 19" century. Several forecasting models and tools have been
developed for forecasting weather, earthquakes, political results, the spread of virous in
medicine, macroeconomic trends, financial performance, stock exchange returns, demand
and sales in supply chain management, and energy consumption. The definition of
forecasting lies in the utilization of all the available information or historical data as input
in an attempt to make predictions about the trends in the future behavior of the variable of
interest. Forecasting techniques are divided in two categories, qualitative forecasting
techniques that are based on the personal opinion of experts through interviews or analysis
of data and quantitative forecasting techniques that use historical statistical data for
projecting the past statistical behavior and patterns into the future. The forecasting models
are also divided in categories depending the forecasting horizon, the number of periods for

which the forecast is generated.

In energy management and electricity consumption forecasting methodology plays an
important role since it is essential to decision making for the efficient consumption of energy
sources, investment in renewable energy sources and the optimal operation of energy
systems. The electricity load forecasting has drawn significant attention in academic
literature and in energy business debates. As population is increasing worldwide and
technology is progressing, the more electricity is expected to be consumed for cooking,
heating, and operation of electrical appliances. In addition, new consumer norms and
preferences such as the gradual substitution of petrol automobiles with electric and the
increase in the number of electric consuming devices that make everyday life more

comfortable are expected to increase the electricity demand.

The electricity load forecasting depending on the forecasting horizon can be classified into

three categories; short-term forecasting (forecasted values up to a couple of weeks ahead),
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medium-term forecasting (forecasting horizon ranges from one month up to a year), and
long-term forecasting (forecasting electricity load for a period more to one year ahead).
Long-term forecasts about electricity demand are useful for managing the energy resources,
taking decision about the future energy mix, examining possibilities of capacity expansion
or shutting down electricity generation plants, and expanding the electricity grid. Medium-
term forecasting of electricity load is used for the planning the supply chain of energy
resources in electricity generation facilities, building stocks of energy fuels in period of
potential supply disruptions, examining the potential revenues of the generation companies,
and designing future tariffs or distribution fees. Finally, the short-term electricity load
forecasting is important for facing peak load demand, managing the efficient operation of
the electricity network, reduce the uncertainty for the production companies in the amount
of revenues that will make in short term, and profit generation from electricity exchange

with different electricity systems.

The majority of the quantitative forecasting models that we can see in academic literature
can be categorized into three categories; time series models, regression analysis models, and

soft computing models using simulation and artificial intelligence.
2.3.1 Time Series Models

Time series models are among the simplest models used in electricity load forecasting.
Essential in this modeling and forecasting process is the availability of electricity load time
series, meaning the continuous in time sequence of observations. The forecasted values of
the variable of interest in time series models is made from the behavior of the previous
observations. In this category we can find simple averaging models such as Moving
Averages models, Exponential Smoothing models, Holt-Winters Exponential Smoothing
model, and Autoregressive Moving Average Models (ARMA) (Ghalehkhondabi et al.,
2016).

Time series models have been tested in academic literature for all the forecasting horizons.
ARMA models were used by (Ediger and Akar, 2006) for generating the future demand for
several energy sources in Turkey, including electricity, based on annual historical data from
1950 to 2004. Different autoregressive models were compared including the Autoregressive
Integrated Moving Average (ARIMA) and Seasonal Autoregressive Integrated Moving
Average (SARIMA) models for energy demand by source and total energy demand. Ediger
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and Akar concluded that forecasts for the total energy demand using the ARIMA and
SARIMA models performed better that the summation of forecasts by energy sources based
on criteria such as the goodness of fit and forecasting error. In short-term forecasting
modelling, (Pappas et al., 2010) applied the ARMA methodology in hourly electricity load
observations for two years from the Greek power system in order to forecast hourly
electricity load in 2006. The proposed ARMA model was fitted using three different criteria
(Akaike Information Criterion, Corrected Akaike Information Criterion, and Schwarz’s
Bayesian Information Criterion) finding satisfactory results in predicting week ahead hourly
electricity load (short-term horizon). The ARIMA and Generalized Autoregressive
Conditional Heteroskedasticity (GARCH) methodology was used by (Hor et al., 2006) to
predict electricity load daily patterns by taking into account also the distribution of residuals

(Ghalehkhondabi et al., 2016).
2.3.2 Regression Models

The second category of electricity modeling methodology includes regression models, one
of the most used statistical methodologies for examining the causal relationship between
variables and in some instances used for generating forecasts. Building a regression model
requires constructing the relationships between the dependent or response variable and other
independent variables that affect the dependent variable. In the case of electricity load
forecasting, regression models use the historical values of the electricity load (dependent or
response variable) and one or several influence or independent variables (price, weather,
humidity) that have a causal relationship with electricity consumption. Regression models
are distinguished into linear and nonlinear regression models accordingly to the relationship
between the variables. In the case of the linear relationship between the variables of the
model, regression models can be univariate models (simple linear regression models or
multiple linear regression models) and multivariate regression models (the regression model
examines the linear relationship between multiple dependent and independent variables)

(Ghalehkhondabi et al., 2016).

In short-horizon electricity load forecasting using hourly observations, (Ramanathan et al.,
1997) developed a multivariate regression model with different regression equations for
each hour of day. In their approach, twenty-four different regression equations occurred for
the weekdays and another twenty-four different regression equations emerged for each hour

during a weekend. Adjusting the regression equations with the forecast error of the previous
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hour equation produced extremely good forecasting performance against a wide range of
alternative models including ARMA techniques with few limitations in the presence of

extreme temperature events.

An important property of regression, and in general econometric models, is the correlation
of macro-economic and social variables with electricity demand. A multiple regression
equation for forecasting electricity demand in N. Cyprus was examined by (Egelioglu et al.,
1999). In this model, different economic variables including the electricity price, the number
of customers, the number of tourists and annual electricity consumption examined
highlighting the importance of developing weather sensitive models that could produce
more accurate results. Adjustments of traditional regression models with time series
approaches have also made. In (Harris and Liu, 1993) the dynamic relationship between
electricity load and several independent variables was examined using monthly data in a
multiple-input model together with ARIMA as a baseline transfer function for the error term.
The synthesis of these two approaches according to the authors produced models with better

understanding of the behavior of the data and the economic theory.

The nonlinear relationship between energy load and temperature was studied by (Halepoto
et al., 2014). The authors found that the nonlinear behavior of electricity load at any specific
hour of the day and several exogenous variables affect the forecasting performance of
models. They proposed that both linear and nonlinear modeling techniques would generate
more realistic results. In their paper except from the traditional simple and multiple linear
regressions included quadratic and exponential regressions for modelling the effect of
temperature on hourly electricity load and validating their model for different 4-day samples

from the historical data.

In the methodology used in academic literature, we can find significant work in the use of
panel data time series models for electricity load and electricity prices modeling. Panel data
time series allows for clustering among time, and thus could provide insights about the
hourly difference on the behavior of electricity load. The estimation of a linear panel data
regression models assuming fixed effects was examined by Thomaidis and Biskas (2021)
for analyzing the key fundamental drivers of electricity prices in Greece showing that there
is heterogeneity in dynamic behavior of hourly electricity prices. The panel date time series
analysis allows the examination of the dynamic relationship between the variables and

captures the memory of the electricity time series process.
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2.3.3 Soft Computing Models

In academic literature except of the two broad energy modeling and forecasting methods
described above, there are several models developed based on computing modeling and
artificial intelligence. The advantage of those models is their ability to capture the complex
behavior of electricity systems, mimic energy phenomena and examine different scenarios.
Several soft computing methodologies are suggested in academic literature such as Genetic
Algorithms, Fuzzy Logic, Neural Networks, and Evolutionary Algorithms (Ghalehkhondabi
et al., 2016). However, soft computing models are having the disadvantage that are not
easily understood and cannot be used from an audience with limited programming
knowledge. As in this dissertation electricity load modeling and forecasting capabilities will
be performed with the use of time series and regression models analysis, soft computing

modelling is not analyzed further.
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3. Methodology

3.1 Data Description and Analysis

In this section a analysis of the sample data for the key variables that are going to be used is
presented. Real data for electricity load are provided from the European Network of
Transmission System Operators for Electricity (ENTSO-E) transparency platform in which
thirty-five national transmission operators are reporting electricity generation,
transportation and consumption data for ensuring the security of the European electricity
grid. Actual hourly electricity load data for Spain are used for the analyzed time period
covering  from  01/01/2019 at  01:00  wuntil  31/12/2019 at  24:00

(https://transparency.entsoe.eu/load-domain/r2/totalLoadR2/show, accessed:01 June 2023).

The data set includes 8.760 hourly observations for the actual total electricity load in Spain
with the minimum observed electricity consumption being 17.168 MW and the maximum
electricity load being 40.107 MW (mean value 28.537,41 MW and standard deviation
4.524,51). Table 1 presents the descriptive statistics for the total Electricity load by hour and
for the whole time series. On average, peak electricity load is observed at 13:00, while the
larger standard deviation is observed at 09:00. Performing the Shapiro-Wilk and Skewness-
Kurtosis test for normality in the Actual Total Electricity Load, we could not reject the null
hypothesis that the variable is normally distributed at 5% level of significance for each hour
of the day (with exception the 02:00 and 20:00). Thus, electricity forecasting models that
are based on the assumption of non-normal distributed variable are expected to poorly

perform.
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Table 1 Descriptive Statistics: Electricity Load over the period 01/01/19-31/12/19

Hour Mean St. Deviation Skewness Kurtosis
01:00 25138.81 2027.491 126546 2.456702
02:00 23792.78 1747.039 -.0457488 2.564048
03:00 23000.88 1606.076 -.2045823 2.747808
04:00 22650.34 1581.456 -.325611 2.939562
05:00 22719.36 1627.052 -.4626522 3.079485
06:00 23729.73 2051.77 -.5124323 2.658191
07:00 25673.54 2921.983 -.613535 2.19648
08:00 27952.92 3813.568 -.585012 2.151791
09:00 29752.4 4087.034 -47225 2.36221
10:00 31021.34 3814.594 -.3896329 2.574172
11:00 31730.44 3566.857 -.3101583 2.619569
12:00 32100.55 3488.666 -.3249996 2.559539
13:00 32155.35 3447.513 -.2853374 2.532362
14:00 31780.11 3364.096 -. 1587558 2.498789
15:00 30979.33 3350.07 -.2130735 2.636585
16:00 30411.38 3539.759 -.2370169 2.593737
17:00 30087.37 3619.856 -.2303898 2.532592
18:00 29917.62 3537.917 -.1842982 2.436762
19:00 30417.08 3512.613 .0132285 2.498083
20:00 31368.35 3362.576 .0941747 2.621341
21:00 31990.97 3093.376 2518188 2.670597
22:00 30899.44 3088.565 4683471 2.598752
23:00 28800.91 2833.951 4284667 2.458061
24:00 26834.93 2307.325 2235331 2.4662
Whole Sample 28537.94 4524.502 0599045 2.133783
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Figure 1. Hourly Electricity Load — Spain 01/01/19 at 01:00 to 31/12/19 at 24:00.

One first observation from the above time plot of electricity load we can detect seasonal
periodicities. Electricity load appears to exhibit periodicities within a day, within a week
and within months. Particular hours of the day appear to have significant lower electricity
load compared to other, while similar patterns appear between the weekdays and the days
of the weekend. Also, there is significant higher electricity consumption during summer and
winter months compared with the remaining months. The seasonality in electricity load
behavior is in accordance with traditional economic theory since the economic activity
during the working hours of the day and the working days of the week is higher. In addition,
the electricity for residential cooling and heating is higher during winter and summer months
respectively. Thus, seasonality in electricity load is a factor that should be taken into account
in modeling and forecasting with the adaption of dummy variables. Dummy variables are
usually taking the value 1 for a specific hour/day/month or season and 0 elsewhere (with 1
dummy variable less than the number of observed facts, i.e. 6 dummy variables for the day
of the week seasonality). We can see the periodicity in electricity load described, in the next
box plots by hour of the day, by day of the week (1 for Monday to 7 for Sunday) and by

month of the year.
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Figure 2: Box-Plots of Electricity Load by Hour of the day, by Day of the week and by Month.

In general terms, electricity load as provided by ENTSO-E will be used as the dependent
variable in the majority of the models that will be examined in the next session. The main
independent variables that will be examined are the day-ahead electricity price
(Euros/MWh), day ahead scheduled total electricity generation and average temperature. All
the variables are available on ENTSO-E transparency platform. Also, the hourly average
temperature in Spain is provided by ENTSO-E transparency platform and as plotted in the
graph below we can see that in Spain the temperature variates from 1 degree of Celsius to

34 degrees of Celsius on average for the whole country.
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Figure 3. Average Hourly Temperature in Spain from 01/01/2019 01:00 to 31/12/2019 24:00

There are several arguments in academic literature about the effect of average temperature
on electricity consumption since most models assume a linear relationship between the two
variables. However, lately there have designed and examined electricity load models
arguing for a non-linear relationship between electricity consumption and temperature
should be used since a marginal increase from 18 degrees of Celsius to 19 degrees of Celsius
or a marginal decrease from 19 degrees to 18 is not expected to have a significant result in
electricity load. The non-linear relationship between temperature and electricity
consumption is introduced in many research papers of the academic literature with the use
of variables capturing the deviation from the temperature that will result in an increase in
electricity consumption for heating or cooling. This non-linear realization of temperature is
commonly named as Heating Degree Days (HDD) and Cooling Degree Days (CDD) and
take into account the degrees difference in observed temperature outside from the human

comfort zone. These variables are calculated as:
HDD, = max(0,T" —T,)
CDD; = max(0,T, — T)

In the formulas above T, denotes the observed average temperature in time t while T# and

T¢ denotes the threshold temperature for heat and cold, the temperature over and under
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which is accompanied with increase in electricity consumption because of the use of
electricity appliances. In the analysis of this dissertation, the threshold temperature is set to
20 degrees of Celsius for the HDD and 15 degrees of Celsius for CDD as suggested by the
Spanish Technical System Operator (Moral-Carcedo & Vicéns-Otero, 2005).

3.2 Electricity Load Modeling and Forecasting

3.2.1 Time Series Models
Among the simplest methods for generating electricity load forecasts are the averaging

methods and the exponential smoothing method. These models are particular useful because
they use only the available information of the historical time series of electricity load and

are simple in their calculations.
3.2.1.1 Moving Average Method

One of the most common averaging methods used in forecasting is the Simple Moving
Average, which takes into account the historical information of the time series to generate a
forecast value. The simple moving average does not use the whole available past
observations for creating a forecast but a few numbers of previous observations. One of the
properties of this method is that the simple moving average is rolling over time and it
“drops” information that is not relevant. The formula of the Simple Moving Average has the

form:

Y1 Electricity Load,_;
n

Forecasted Electricity load; =

In the above equation, n is the number of periods used for generating the forecast.

3.2.1.2 Simple Exponential Smoothing Model

Simple exponential Smoothing is the second approach used in forecasting and has been
applied in energy and electricity consumption based only on past observations of the time
series. The exponential smoothing models are similar with the moving average models
described above with the difference that a weight in the more recent observations is imposed.
Also, the weights in the observations are different and exponentially decrease as more far to

the history of the time series we are going (Islam et al., 2020). By denoting with a the
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smoothing coefficient (0 < a < 1), the formula for the exponential smoothing moving

average has the form:

Forecasted El.load; = a * Elec.Load;_; + (1 — a) * Forecasted El.Load,_,

3.2.1.3 Holt-Winters Exponential Smoothing Model

The Holt-Winters exponential smoothing method generalized the above approach of simple
exponential smoothing methodology to deal with the presence of seasonal and trend
behavior in the time series. Trend can be seen as the long-term tendency of a time series,
and in case of electricity we expect to be the long-term increase. Seasonality is the tendency
of electricity load to exhibit a repeating behavior. In Holt-Winters model there are three
exponential parameters; the smoothing coefficient, the seasonal component coefficient, and
the trend component coefficient. In the short-term electricity forecasting using few periods
(less than a couple of years), trend is not really observed and thus Holt-Winters seasonal

model should be preferred (additive seasonality or multiplicative seasonality) (Islam et al.,

2020).

3.2.2 Autoregressive Models

The advantage of Autoregressive models is that the behavior of electricity load and forecasts
are captured only from the historical observations of electricity load. Autoregressive Models
are built on the properties of the Exponential Smoothing and Moving Average models
described above. An Autoregressive Model (AR) assumes that the current value of
electricity load is a linear combination of its previous observed values (Islam et al., 2020).
The estimation of AR model of order p is simple linear regression with the current value of
electricity load as the dependent variable and p-lag values of electricity load as the

independent variables. The representation of an AR (p) model has the form:

p
Lnload; = By + Z Bi * Lnload;_; + a;

i=1

In the above model, S, is a constant, f3; are the regression coefficients of the lag values of

electricity load and their number is equally to the number of the order of the AR process p,
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and «, is the error term of white noise (an important property and building block in

autoregressive models).

In electricity load forecasting more common are autoregressive moving average models
(ARMA) in which the forecasted value of electricity load is a linear combination of lag
values of the electricity load and previous white noises. An ARMA (p, q) model without a

constant term has the form:

q
Bj *&c-j
=1

p
Lnload; = z @; * Lnload;_; +
i=1

In the above model, ¢; are the coefficients of the AR process of order p, ; are the

coefficients of the MA process of order g, and &; are the white noise terms.

The ARMA models as described above require a time series that is stationary. However,
stationarity is a property that rarely exist in time series. In the case of non-stationary time
series, the modelling process follows the Box-Jenkins methodology of differencing the time
series to remove the non-stationarity. The methodology of integration enters the AR and MA
processes, creating the Autoregressive Integrated Moving Average (ARIMA) models of
order p for the AR process, q for the MA process and d for the differencing times of the time
series. In available forecasting models used in academic literature for energy and electricity
forecasting we can also find some other similar models such as the Seasonal ARIMA (or
SARIMA) and Autoregressive Moving Average with Exogenous variables (ARMAX)
(Islam et al., 2020).

The time series models and autoregressive models described have a significant advantage
that they require only the knowledge of the past values of electricity load for generating
forecasts. However, the most important disadvantage of these methods is that they lack in
understanding and explaining the behavior of electricity load over time. Electricity load
changes not only because of time but also because of other factors influencing the demand
for electricity. Hence, forecasting models should examine not only the effect of time but also

the effect of other variables in electricity load.

Postgraduate Dissertation 21



m OPEN Gerasimos Minetos, Time Series Analysis of Electricity Demand.

UNIVERSITY

3.3 Regression and other Econometric Models
3.3.1 Multiple Linear Regression

Regression models that describe the linear relationship between one dependent or response
variable and more than one independent or explanatory variables are called multiple linear
regression models (Yildiz et al., 2017). In this case, the natural logarithmic value of total
electricity load (InLoad) is the dependent variable and as independent variables are used the
seasonal dummies, the natural logarithmic values of day-ahead price (InPrice) and the
temperature variables (HDD and CDD). The representation of a multiple linear regression

model has the form:
9
LnLoad; = By + p, * LnPrice, + +p, * HDD, + 3 * CDD,; + Z Bi*D; + ¢
4

In the regression equation above the f3; are the regression coefficients (including a constant
term), D; are the seasonal dummies (taking the value 1 for a specific day of the week and 0
for the remaining days of the week) and &; is the error term. Alternative variations in the
regression equation above are including as independent variables the hour of the day, the
number of the day, or/and the number of the month to capture the deterministic part of
electricity load instead of dummy variables. Estimation of the regression model using the
historical data provides estimates for the coefficient of each independent variable, and thus
we can generate the forecasted value of InLoad. Usually, the past observations of the
variables are divided into two parts with the first part being used for the model estimation
while the second part for evaluation of the forecasting accuracy (Islam et al., 2020). If the
data set is relatively large, it allows rolling division of the data set into estimation and

forecasting testing regions.

3.4 Postestimation Model Evaluation and Forecast Accuracy

In the previous sections was highlighted the importance of forecasting of electricity load
and described the forecasting models presented in academic literature without presenting a
former definition of the term forecasting. Forecasting is developing the mechanism for
making predictions about the future performance of variables or occurrence of events based
on the historical and current information. The forecasting process starts with the data
evaluation, continues with the selection of the most suitable forecasting model (or models),

the decision about the forecasting periods and the generation of the forecasts, and concludes
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with the monitoring and evaluation of the forecasting performance when the actual future
variables will become available. Electricity load forecasts are essential for the generation
facilities and electricity system operators since they are used for ensuring the electricity grid
stability and are essential for the profitability of the agents in the electricity market. In this
context, the accuracy of the forecasting process in really important. Usually, forecasts about
demand are evaluated regularly and improvements are made in case that there are changes

in the variables that degrades the forecast performance over time (Islam et al., 2020).

Important factor for the evaluation of the forecasting models is the size of the data set since
a larger data set does not necessarily means a higher forecasting accuracy. After the
forecasting model is chosen, the historical data are divided into two parts with the first part
being used for the estimation of the models’ parameters (in-sample period) and forecast
generation and the second part being used for evaluating the forecasts generated with the
actual values of the historical data (out-of-sample period or postestimation testing). If the
forecasting accuracy measures suggest that the model captures satisfactory the future values
of electricity load, then the forecasting windows are rolling for generating the forecasts for
the future values. Forecasting accuracy evaluation is performed by graphing the forecasted
and actual values on the data set (visual performance), and by calculating forecasting
accuracy metrics. Forecasting accuracy metrics are using the forecast error which is defined
as the difference between the actual value and the forecast at time t. If the difference is
positive, the forecasting model underestimated the future electricity load while if the
difference is negative the forecasting model overestimated the future electricity load (Islam

et al., 2020). Few of the most used forecasting accuracy metrics are presented below.

Mean Absolute Deviation (MAD)

The Mean Absolute Deviation (MAD) metric is the average of the absolute values of the
forecast errors. The absolute value in the calculation of this forecast accuracy measure
guarantees that possible changes in the polarities of the forecast errors will not cancel each
other, and as a result the MAD shows the size of the error (Islam et al., 2020). The larger
the MAD, the less accurate the forecasting model since it systematically out- or over-

estimate the future values of electricity load.

vaAp = |X(Actual Value — Forecast) l/n
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Mean Square Error (MSE)

The Mean Square Error (MSE) is the average of the squared errors. The larger the MSE, the
less accurate the forecasting model. This performance metrics gives a bigger magnitude to

large errors through squaring them.

— 2
MSE = Y. (Actual Value — Forecast) /n

Mean Absolute Percent Evror (MAPE)

The Mean Absolute Percent Error (MAPE) metrics uses the mean value of the absolute
percent forecast error (the division of forecast error with the actual observed value). This
accuracy metric has the advantage that show as the percentage error with respect with the

actual variable and thus give us better information about the quality of the error.

Y.(Actual Value — Forecast)
MAPE = /Actual Value i

100
n
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4. Results

4.1 Time Series Analysis
4.1.1. Simple Moving Average Models

The first models that will be examined for their ability to model electricity load are the
simple averaging models; models that are considered among the simplest and are
extensively applied for forecasting. Firstly, the simple moving averages will be calculated
using all the hourly electricity load observations by dividing the sample in two parts. The
simple moving average of 12-hour, 24-hour, 36-hour, 48-hour, 72-hour, 96-hout, 120-hour,
144-hour and 168-hour are calculated. Following the description of the simple moving
average models described in Chapter 3, the 12-hour simple moving average or SMA(12)
uses the previous 12 hourly observations for producing the forecast for the next period.
Similarly, the SMA(24) used the previous 24 hourly observations (previous day) while the
SMA(168) uses the 168 previous hourly observations (7-days). The SMA mentioned are
made from the beginning of the sample and forecast accuracy metrics are calculated for the
SMA electricity load forecasts for the period 01/08/2019 01:00 to 31/08/2019 24:00.

A first assessing of simple average models is usually plotting the forecasts created against
the actual observations when they are becoming available or by dividing the sample in two
parts (estimation sample and forecast testing sample). In Figure 4 below, the Simple Moving
Averages (SMA) and Actual Electricity Load for the period 01/08/2019 00:00 to 07/08/2019
23:00 are presented. We observe that using all the available hourly data from the previous
periods, the larger the number of previous observations used (or the longer the model’s
memory), the smoother the forecasts created and the less are following the patterns of the

original time series.
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Figure 4.: SMA Forecasts and Actual Electricity Load

A second assessment of each SMA models’ forecasting performance and ability to capture

the behavior of the time series is through the calculation of the forecasting accuracy

measures. For each SMA model, the forecasting error (difference between actual electricity

load observed and the forecasted electricity load) were calculated. The forecasting accuracy
metrics of Mean Absolute Deviation (MAD), Mean Absolute Percentage Error (MAPE),
and Mean Square Error (MSE) for each SMA are presented in the Table 2 below. The
SMA(168) generated the forecast for electricity load on August with the smaller forecasting

accuracy metrics value since in average the forecast deviation from the actual electricity

load was 2.634 MWh and the forecast error compared to the observed actual value was

9,82%.

MAD MSE MAPE
SMA(12) 3566,22 18394500  13,26%
SMA(24) 297550 14706050  11,46%
SMA(36) 2882,53 14117199  11,18%
SMA(48) 2840,85 14556145  11,05%
SMA(72) 2859,46 14085077  11,07%
SMA(96) 2808,67 13292444  10,82%
SMA(120) = 2808,31 13169701  10,79%
SMA(144) | 268351 11312169  10,12%
SMA(168) = 2634,02 10552668  9,82%

Table 2: Forecasting accuracy measures of the SMA
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Another approach that could provide more accurate forecasts is calculating the simple
moving average only for the specific hour of the day, thus calculating 24 SMA forecasts one
for each hour of the day. For the hourly simple moving average forecasts, we are calculating
the SMA(2), SMA(3), SMA(4), SMA(5), and SMA(6). The SMA(2) at 01:00, for example,
generates the forecast for the specific hour of the day by computing the average of electricity
load at 01:00 of the previous two days. Figure 5 below, illustrates the simple moving
averages at 01:00 for the period 01/08/2019 to 31/08/2019. As we can see, the simple
moving averages mimic the pattern of the actual electricity load at 01:00 with a delay. As
we increasing the number of the observations used for deriving the SMA, the smoother the

forecast. In Appendix A, Graph A.1 we followed the same procedure for more representative

hours of the day.
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—— SMA(6) Actual Total Load

Figure 5: Hour Specific SMA forecast

4.1.2. Autoregressive Moving Average (ARMA) models

Another modeling approach for electricity load are the models that belong in the
Autoregressive family methodology in which the response variable is dependent on its
previous time observations (lag values). The autoregressive models come in many
variations, as described in the literature review with ARMA (Autoregressive Moving
Average models) being the most common for electricity load modeling and forecasting. The
base rationale behind ARMA models for electricity load modeling is the idea that electricity
load behavior can be considered as random and influenced by different non-deterministic
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factors and processes that cannot be modeled. However, one of the challenges in
Autoregressive models is choosing among the various modelling options (AR, MA, ARMA,
ARIMA, ARMAX, SARIMA) and model identification (optimal lags for the AR, MA, and

Seasonal Differentiation).

One basic assumption for applying ARMA modelling approach in electricity load is the
stationarity property of the time series. A time series process is stationary when exhibits a
constant mean and a constant variance. The procedure that will follow for examining the
ARIMA (p,d,q) approach on modeling electricity demand is using the hourly electricity load
observations for Spain from 01/01/2019 01:00 to 31/07/2019 23:00 for model identification
and estimation of parameters, and the observations from 01/08/2019 01:00 to 31/08/2019
24:00 will be used for postestimation testing of forecasting accuracy. Testing the sample for
stationarity by the Augmented Dickey-Fuller test gives as a Z(t) statistic of -10,850 and a
corresponding p-value of 0,000 (reject the null hypothesis that the Total Electricity Load
follows a random walk process with or without a drift). The same conclusion we get and
from Phillips-Perron unit-root test which uses Newey-West standard errors for serial
correlation (the unit-root test shows a Z(t) statistic of -15,710 at 9 Newey-West lags and a
corresponding p-value of 0,000 providing us with sufficient evidence for rejecting the null
hypothesis of a random walk with or without drift).

From the unit-root tests we conclude that the hourly electricity load time series is a stationary
process and thus there is no need for differencing and thus the parameter d=0 in the ARIMA
model specification. For determining the number of the parameter p for the AR process and
the parameter q for the MA process, statistical software such as STATA determines the
optimal number of lags by fitting several different models and suggests the best model
according to the minimization of information criteria. Based on Akaike’s Information
Criterion (AIC), Schwarz’s Bayesian Information Criterion (BIC), and the Hannan and
Quinn Information Criterion (HQIC) an ARIMA (2,0,2) model can be used for modeling
electricity load. Plotting the Autocorrelation Function (ACF) and Partial Autocorrelation
Function (PACF) should agree with the lags specified from the minimization process of the

information criteria.
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In the ACF graph in GA.3 of the Appendix A, we observe that the autocorrelation function
for natural logarithm of electricity load for the estimation part of the sample does not decay
exponentially but there is clear evidence of seasonal behavior on the time series since there
is a repeating pattern in the autocorrelation during a stable number of lags. Thus, a model
that is taking into account the seasonal behavior of electricity load during a day should be
preferred. The SARIMA (p, 0, q, s) has been used in a large number of academic researches,
with s being the parameter for seasonal differencing. From the PACF plot we can see that
the third lag is falling with the interval and hence a 2 lag AR and MA process might be
sufficient for the estimation of the SARIMA specification. A SARIMA(2,0,2,12) is
estimated for the data sample from 01/01/2019 to 31/07/2019 and forecasts for August 2019
are plotted in Graph G.A.3 of the Appendix A. We observe that the SARIMA model is
following the seasonal effects of the actual electricity load data behavior very closely. In
addition, the SARIMA(2,0,2,12) produced forecasts with a MAD of 1.927 MWh and MAPE
of 7,06%.

4.2 Regression Models
4.2.1 Multivariate Linear Regression (MLR) Models

MLR with HDD/CDD as variables for the weather effect on electricity load

There are several different versions of regression models presented in academic literature
varying in the choice of dependent/independent variables, statistical specifications and
assumptions. As the aim of this dissertation is to analyze and forecast electricity load; the
response variable will be the natural logarithm of total electricity load. The independent
variables that will be used are the day-ahead price, the 24-hour average day a-head price,
the temperature effect (average temperature or the HDD and CDD temperature variables),
and dummy variables for modeling the seasonal effects. The electricity load exhibits daily
seasonality with lower consumptions during weekends. Thus, in the model will be included
six dummy variables taking the value 1 or 0 according to the day of the week for Tuesday
to Sunday. For the effect of each specific season of the year (winter, spring, summer and
autumn) on electricity load, since the observations are for one year and we divide the sample

in estimation and out-of-sample forecasting samples, we will include in the model the
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variable month taking the values 1 to 12 for each month of the year. Thus, the model can be

written as the equation below:

LnTotalLoad; = By + B * LnPriceDA; + B, * LnAver24Price; + B3 *
LnHDDt + ﬁ4 * LnCDDt + BS * DTuesday + ﬁ6 * DWednesday + ﬁ7 * DThursday + ﬁs *
DFriday + ﬁ9 * DSaturday + ,810 * DSunday + ﬁll * Month + &t

For the estimation of the coefficients f; in the above linear regression model we will use
the hourly observations of each variable from 01/01/2019 00:00 until 31/07/2019 24:00 and
then we will test the model’s forecasting ability by testing out-of-sample forecasts for
August 2019 with the actual observations. Using 5.064 hourly observations we get the
regression output using ordinary least squares (OLS) from STATA as shown in Table 3

below.
Source SS df MS Number of obs = 5,064
F(11, 5052) = 603.39
Model 73.8699307 11 6.71544825 Prob > F = 0.0000
Residual 56.2260521 5,052 .011129464 R-squared = 0.5678
Adj R-squared = 0.5669
Total 130.095983 5,063 .025695434 Root MSE = .1055
InTload | Coefficient Std. err. t P>t [95% conf. interval]
1nDAPrice .3697038 .0094241 39.23 0.000 .3512285 .3881792
lnaver24 -.1620117 .0149977 -10.80 0.000 -.1914136 -.1326098
1nhdd -.0461783 .0019224 -24.02 0.000 -.049947 -.0424095
1ncdd .0886959 .0022402 39.59 0.000 .0843041 .0930877
d_tue .0351896 .0056756 6.20 0.000 .024063 .0463162
d_wed .0431589 .0056 7.71 0.000 .0321804 .0541373
d_thur .040418 .005607 7.21 0.000 .0294259 .0514102
d_fri .0299117 .0056311 5.31 0.000 .0188723 .0409512
d_sat -.0543751 .0056582 -9.61 0.000 -.0654677 -.0432825
d_sun -.1135582 .0056687 -20.03 0.000 -.1246714 -.1024451
month -.0360607 .0011562 -31.19 0.000 -.0383274 -.033794
_cons 9.602672 .0511542 187.72 0.000 9.502387 9.702956

Table 3.: OLS Regression Output MLR models with HDD/CDD

The results of the estimation show a causal linear positive relationship between the
electricity load and the price at time t, while there is a negative relationship with the 24-hour
average electricity price. In addition, the model suggests that during the weekend electricity
load is decreasing (seasonal effect). Overall, 56,78% of the variance of electricity load can

be predicted from the independent variables used, according to the R-squared statistic. The
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F-statistic of 603,39 and the p-value of 0,00 suggests that we can reject the null hypothesis
that the independent variables jointly do not predict the behavior of the dependent variable
at 0,05% level of significance. Also, the p-values of the coefficients of each variable are

suggesting that we can reject the null hypothesis that are not statistically significant at 0,05

level of significance. Hence, the regression equation can be written as:

LnTotalLoad; = 9,60 + 0,369 * LnPriceDA; — 0,162 * LnAver24Price; —
0,0461 * LnHD D, + 0,0351 * LnCDD; + 0,0351 * Dyye54qy + 0,0431 * Dyegnesaay +
0,044 = Drnyrsaay + 0,0299 = Derigay — 0,0543 = Dsaturday — 0,113 = Dsunday —
0,036 * Month

From the above estimation of the model, forecasts for the hourly total electricity load for the
period 01/08/2019 00:00 to 31/08/2019 were produced and compared against the actual total
electricity load. Plotting the forecasted and actual values of electricity load for August in

Figure 6 below provide us with a first assessment of the forecasting ability of the model.

10.6 1
10.4 '} }\

10.2

=2

10 1

9.8 1

01aug2019 01:00:00 31aug2019 27
DateTime

——— Forecast of In(Electricity Load) —— Actual In(Electricity Load)

Figure 6: Postestimation Forecasted and Actual Electricity Load for August 2019

However, the above graph with the forecasts created by the estimation of the time series of

hourly electricity load might appear that fits the actual data pattern on August, if we give a
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closer look to specific single-hour we see contradicting results. For example, plotting the
forecasts at 06:00, 09:00, 15:00 and 22:00 on August 2019 in the following Figure 7, reveals

different forecast error behavior subject to the hour of the day.
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Figure 7: Hour Specific postestimation forecasts of the OLS model with HDD/CDD August

Since we have enough data for rolling the estimation and forecast testing window, a second
estimation of the parameters of the linear regression model from 01/01/2019 at 01:00 until
31/08/2019 at 00:00 follows. The regression output from the statistical software is shown in
the Table B1 in Appendix B. The relationships between the dependent and independent
variables are similar with a small variation in the size of the estimated coefficients. The
number of hourly observations is 5,807 and the R-squared is 0,5813. Again, the F-statistic
of the model has a p-value of 0,000 mining that we have sufficient evidence to reject the
null hypothesis that all the coefficients of the model are no-statistically significant. Also, the
linear regression output for the coefficients of the model shows the same relationship

between the dependent and independent variables as the previous estimation with the

smaller sample.

In terms of forecasting ability, the model is tested by creating forecasts for the period
01/09/2019 00:00 until 31/09/2019 23:00 and tested with the actual values of electricity load
observed during this period. In Graph A2 on Appendix A are plotted the actual and
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forecasted values of electricity load. The forecasts on September show similar behavior with
the previous model (as for specific hour every day) and larger forecast error compared. The
forecasting accuracy metrics for August is a MAD of 2.062 MW and a MAPE of 7,04%
while for September the MAD is 3.141 MW and the MAPE is 10,85%. We can conclude

that the estimated model is exhibiting a similar relationship between the variables t the

testing sample.

MLR with Average Temperature as a variable for the weather effect on electricity load

In the above estimations of the model, we modeled the effect of the weather conditions
(variation in the temperature) in the electricity consumption using the Heating Degrees Day
(HDD) and Cooling Degrees Day (CDD) following the non-linear causal relationship
suggested in literature. However, we should examine if the average temperature has a linear
effect on electricity consumption. Thus, in the regression model for the estimation window
January-July we estimate the model by dropping from the analysis the HDD/CDD variables
and using the hourly average temperature observed in Spain (natural logarithm). The

regression output from the STATA statistical software is shown in Table 4.

Source SS df MS Number of obs = 5,064
F(10, 5053) = 603.25

Model 70.7953871 1l 7.87953071 Prob > F = 0.0000
Residual 59.3006757 5,853 .011735736 R-squared = 0.5442
Adj R-squared = 06.5433

Total 138.6895983 5,863 .025695434 Root MSE = .18833
1nTload | Coefficient Std. err. t P> | t| [95% conf. interval]
InDAPrice . 3666247 . 089689 37.84 0.000 .34763 .3856194
Inaver24 -.0928263 .0152571 -6.88 0.000 -.1227368 -.0629158
Intemp . 1840704 . 0044585 41.29 0.000 .1753299 .192811
d_tue .0300658 . 0058265 5.16 0.000 .0186433 .0414882
d_wed . 06400901 .0057508 6.97 0.000 .0288161 .08513641
d_thur .0403311 .8057577 7.00 0.000 .0290435 .08516187
d_fri .0319135 .0057832 5.52 0.000 .0828576 .843251
d_sat -.8561783 .0058104 -9.67 0.000 -.0675691 -.0447874
d_sun -.1119141 . 0058195 -19.23 0.000 -.1233228 -.1885854
month -.08426788 .0013019 -32.78 0.000 -.845231 -.0401266
_cons 8.887452 .0851229 173.48 0.000 8.787821 8.987883

Table 4. Regression Output of OLS with average temperature as independent variable.
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The R-squared statistic in the new linear regression estimation is 0,5442 showing that
54,42% of the variance in electricity load is explained from the model independent variables.
The model has smaller R-squared statistic from the previous one with a positive relationship

between average temperature and electricity load. We can write the estimated model as:

InTotalLoad, = 8,887 + 0,366 * LnPriceDA; — 0,092 * LnAver24Price; + 0,184 *
Lntemp; + 0,03 * Dyyesqay + 0,040 * Dyegnesaay + 0,040 * Drpyrsaay + 0,031 * Dppigqy —
0,056 * Dsgrurdaay — 0,111 * Dgyngqy — 0,042 * Month

After the estimation of the parameters, we generate the out-of-sample forecasts for August
2019 and we compare them against the actual observations. From even the simple plot we
can see that this model produces less accurate forecasts compared with the model using the
HDD and CDD as independent variables for the same period. In terms of forecasting

accuracy metrics, we have a MAD of 3.120 MW and a MAPE of 10,29%.
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Figure 8: Postestimation Forecasts of Electricity Load on August 2019 Model 2

MLR Model for each hour of the day

As we observed in the above analysis, the multiple linear regression time series models
using the hourly observations from 01 January 2019 01:00 until 31 July 2019 23:00

produced forecasted electricity load values that exhibited an hour-specific forecasting error
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variability. Thus, models that are taking into account the specific hour characteristics of
electricity load are expected to perform better. From the two specifications examined, the
model that included the HDD and CDD temperature variables performed better compared
to the alternative model that used the average temperature in terms of R-squared value but
also has lower MAD and MAPE in the forecast testing region. The model for i= 1, 2, ..,24

takes the form as shown in the equation bellow:

LnTotalLoad;; =  Po; + P1i * LnPriceDA;; + [B,; *x LnAver24Prices; + Bsi *
LnHDDy; + B4; * LnCDDy; + PBs; * Dryesday + Bei * Dweanesdayt + B7i * Drnursaay +
Bsi * Drrigay + Boi * Dsaturday + B1oi * Dsunday + P11i * Month + &

Following the similar procedure as above, we estimate the 24 different hourly models for
the time period 01 January 2019 to 31 July 2019 using Ordinary Least Squares for each hour
independently. In the table below, there are reported the overall model fit statistics.

HOUR NUMBER OF F-TEST R-SQUARED ADJUSTED R- ROOT MSE
OBSERVATIONS SQUARED

1 211 16,57 0,4780 0,4492 0,06328
2 211 14,40 0,4432 0,4125 0,05921
3 211 15,10 0,4550 0,4249 0,05458
4 211 18,03 0,4992 0,4715 0,05096
5 211 23,06 0,5603 0,5360 0,04792
6 211 37,42 0,6741 0,6561 0,04944
7 211 59,18 0,7659 0,7529 0,05746
8 211 81,22 0,8178 0,8078 0,06193
9 211 94,67 0,8396 0,8307 0,05785
10 211 109,59 0,8583 0,8505 0,04857
11 211 104,28 0,8522 0,8440 0,04599
12 211 91,27 0,8346 0,8254 0,04761
13 211 70,74 0,7964 0,7851 0,05205
14 211 50,65 0,7368 0,7223 0,05903
15 211 45,71 0,7164 0,7008 0,06338
16 211 49,06 0,7306 0,7157 0,06594
17 211 60,57 0,7700 0,7573 0,06275
18 211 96,94 0,8427 0,8340 0,05103
19 211 89,07 0,8312 0,8218 0,05264
20 211 101,8 0,8491 0,8408 0,04712
21 211 141,7 0,8868 0,8805 0,03571
22 211 97,39 0,8433 0,8347 0,04135
23 211 41,00 0,6938 0,6769 0,05728
24 211 25,74 0,5872 0,5644 0,05922

Table 5: Test Statistics for each OLS estimated Hourly Equation
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The F-value in all models provided evidence allowing us to reject the null hypothesis that
the independent variables do not reliably predict the behavior of the response variable
(electricity load) at 0=5% level of significance. The individual hypothesis testing for the
significance of the estimated coefficients of each variable varied within each model. As we
seen from Table 5 above, the estimated linear regression model for 10:00, 11:00 and 21:00
exhibit an R-squared values suggesting that more than 85% of the variance in electricity

load can be predicted by the independent variables included.

After the estimation of the 24 linear equations, post-estimation forecasts were extracted for
the month of August. In Table 6 below are presented the forecasting accuracy metrics for
each equation. As we observe, the models have a MAPE considerably lower than the single
equation model using all the hourly observations of the variables. The overall average
MAPE for August 2019 from the 24 equations is 3,84%.

HOUR MAD MSE MAPE
1 1113,22 1596882,83 4,44%
2 869,98 1111467,62 3,64%
3 659,34 566895,06 2,84%
4 587,57 471766,54 2,58%
5 487,80 395318,23 2,15%
6 773,63 1268501,66 3,25%
7 972,85 2258561,57 3,93%
8 1208,31 2498519,14 4,63%
9 820,36 2142644,83 2,94%
10 881,48 2182381,04 3,02%
11 981,23 2027852,40 3,15%
12 1190,71 2452962,87 3,64%
13 1353,00 2743570,91 4,05%
14 1961,03 4652071,18 5,90%
15 1845,17 4217468,21 5,68%
16 1727,63 3820210,57 5,41%
17 1480,15 3049431,18 4,72%
18 1086,27 2028323,08 3,57%
19 966,36 1583011,67 3,23%
20 904,03 1316571,06 3,05%
21 1229,32 1998831,18 3,95%
22 1007,19 1621100,91 3,38%
23 1351,33 2393769,58 4,81%
24 1072,73 1994124,18 4,08%

Table 6: Forecast Accuracy Metrics for Each Hourly estimation of Model 1
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Plotting the out-of-sample forecasted value of electricity load at specific hours during
August 2019 (as we did in the single equation estimation above) for comparison are
presented in Figure 9 below. The forecasts of electricity load at 6:00 (from Equation 6), at
09:00 (from Equation 9), at 15:00 (from Equation 15) and at 22:00 (from Equation 22) are
produced from the statistical software. Clearly, compared with Figure 7 we can see that the
distance between the forecast electricity load and the actual electricity load lines are smaller
(smaller forecast error). Also, the forecasts are following closer the time series patterns of

the actual observations compared to the multiple linear regression model of the whole hourly

rangec.
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Figure 9: Forecasts of Electricity Load at Different hours

Examining again the alternative model for the climate effect as we did in the single equation
analysis, the 24-hour single regression equations using as an independent variable the
average hourly temperature instead of the HDD and CDD produced the following overall
model fit statistics presented in Table 10 below. As we expected, the single equation models
provided different results depending on the hour of the day. For example, at 09:00 the
regression output suggests that 80% of the variance of the response variable (electricity
load) can be predicted from the independent variables. However, overall, the models have

lower R-squared values and higher Root Mean Squared Error comparing with the other 24
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Multivariate Linear Regression equations provided clearly evidence that the first should be

preferred.
HOUR F-TEST R-SQUARED ADJUSTED R-SQUARED ROOT MSE
1 17,47 0,4662 0,4395 0,06383
2 15,57 0,4378 0,4097 0,05935
3 16,5 0,4521 0,4247 0,05459
4 19,37 0,4920 0,4666 0,05120
5 24,48 0,5504 0,5279 0,04834
6 42,09 0,6779 0,6618 0,04903
7 66,75 0,7694 0,7579 0,05688
8 85,5 0,8104 0,8010 0,06302
9 87,16 0,8131 0,8040 0,06224
10 73,26 0,7855 0,7748 0,05961
11 58,11 0,7439 0,7311 0,06038
12 46,66 0,7000 0,6849 0,06397
13 40,12 0,6673 0,6507 0,06636
14 31,27 0,6099 0,5904 0,07168
15 28,16 0,5847 0,5639 0,07651
16 30,86 0,6068 0,5871 0,79470
17 32,79 0,6211 0,6022 0,08034
18 36,68 0,6471 0,6295 0,07624
19 46,72 0,7002 0,6852 0,06997
20 44,97 0,6921 0,6768 0,06714
21 44,35 0,6892 0,6737 0,05902
22 32,03 0,6156 0,5964 0,06461
23 25,4 0,5595 0,5375 0,06853
24 19,29 0,4909 0,4655 0,06560

Table 7: Regression Statistics of each OLS estimated hourly equation Model 2

4.2.2 Time Series Panel Data Analysis

As we highlighted in the time series analysis and the simple regression using the whole
hourly observation data set, the electricity load does not follow exactly a time series process
since different hour within the day have different characteristics. Thus, the electricity load
can be seen as 24 different time series. In this case, estimation of the linear relationship
between the dependent variable and the independent variables could be made through panel
data analysis which allows each hour of the day to be a separate time series. Also, panel data
time series analysis examines the dynamic relationship between the variables by fitting the

fixed-effects or random effects instead of separated OLS as we did in the section above.
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The dependent variable is the total electricity load (natural logarithmic value) and the set of
independent variables used are the natural logarithm of the day ahead price, the average
24hour price, the weather variables (Heating Degrees Days and Cooling Degrees Day) and
the dummies used for modeling the seasonality effect. The panel time series is unbalanced
since its missing one value of the average 24hour price from each panel. Balancing the panel
by dropping the observations of the first day of the year and performing the Hausman
specification test, the p-value suggests fitting a fixed effects model. The estimation results
for the same choice of variables with the simple linear regression above from 02.01.2019

until 31.07.2019 are presented in the next table.

Fixed-effects (within) regression Number of obs = 5,063
Group variable: hour Number of groups = 24
R-squared: Obs per group:

Within = 0.6051 min = 210

Between = 0.7578 avg = 211.0

Overall = 0.3680 max = 211

F(11, 5028) = 700.37

corr(u_i, Xb) = 0.1099 Prob > F = 0.0000

InTload | Coefficient Std. err. t P>t [95% conf. interval]

1nDAPrice .1341006 .006992 19.18 ©0.000 .1203933 .1478079

1nhdd .0185341 .0016728 11.08 0.000 .0152548 .0218134

Incdd .0364919 .0017111 21.33 0.000 .0331375 .0398464

lnaver24 .0985795 .0103083 9.56 0.000 .0783708 .1187883

d_tue .0194727 .0036961 5.27 0.000 .0122267 .0267188

d_wed .0254683 .0036511 6.98 0.000 .0183105 .0326261

d_thur .0261684 .0036507 7.17 0.000 .0190115 .0333253

d fri .0152723 .0036664 4.17 0.000 .0080846 .02246

d_sat -.0789016 .0036937 -21.36 0.000 -.0861428 -.0716604

d_sun -.1342004 .0037007 -36.26 0.000 -.1414555 -.1269454

month -.0038553 .0009365 -4.12 0.000 -.0056912 -.0020193

_cons 9.35217 .0337903 276.77 0.000 9.285926 9.418413
sigma_u .11052215
sigma_e .06859921

rho .72189276  (fraction of variance due to u_i)
F test that all u_i=0: F(23, 5028) = 300.87 Prob > F = 0.0000

Table 8. Panel Data Regression Output (Fixed-Effects)
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After the estimation of the parameters for the 24-hourly clusters, we can produce the
forecasts for the August 2019. A visual representation of the forecasts of electricity load and

the actual observations from the historical data are presented in the next graphs.
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Graphs Forecasts of Electricity load on August by Hour of the Day

Figure 10: Postestimation forecasts of the Panel Data

Similarly, the panel model described above is estimated for the same period using instead
of the Heating Degrees Day and Cooling Degrees Day non-linear realization of temperature
conditions, the hourly average temperature (natural logarithm). Again, forecasts are created

for model comparison in Forecasting Accuracy section.

4.3 Forecasting Accuracy Comparison

In the previous section we developed several different models for analyzing the behavior of
electricity load in Spain using hourly observations. We used the first 7 months of the
observations to calibrate the models and in turn we created the electricity load forecasts for
August. The next step in forecasting methodology is comparing models’ forecasting
accuracy by calculating the forecast error from the historical observations of electricity load
on August. A first comment for each model forecasting behavior was made in the previous

sections from the graphical representation of actual and forecasted values of electricity load.
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4.3.1 Simple Moving Average Models

The first forecasting methods that are examined are the simple moving average models. The
first SMA that calculated from the whole data set of hourly electricity load used the previous
12,24, 36, 48, 72 and 96 observations. The SMA that calculated for the specific hour at each
day used the previous 2, 3, 4, 5 and 6 previous hourly observation of electricity load. Among
the eleven SMA according to the Mean Absolute Deviation (MAD) forecasting accuracy
metric, the smaller value is reported from the SMA(6) calculated from the same hour
observed electricity load. In addition, all the SMA models calculated from previous specific
hour averages performed better compared to the SMA calculated from the whole set of

hourly observations.

4.3.2 Multiple Regression Models

The second forecasting method that was examined in results was the simple regression of
the hourly electricity load observations. Two different regression models were estimated
with the key difference between the two models being the temperature variable (HDD and
CDD in the one model and average hourly temperature in the other). The models were
estimated for the period 01/01/2019 01:00 to 31/07/2019 24:00 and then forecasts were
created for August 2019. The model with the smaller MAD of 2.075,108 was the model with
the model that were using the non-linear temperatures of HDD and CDD. The model using
the average hourly temperature created forecasts that gave a MAD of 3.135,17. The Mean
Absolute Percentage Error of the regression model using HDD/CDD in the independent
variables was 7,06%, while the alternative model tested exhibit a MAPE of 10,31%.

4.3.3 Panel Time Series Models

Two versions of panel data were examined, one with the inclusion of the hourly average
temperature as independent variable and one with the inclusion of Heating Degree Days and
Cooling Degrees Day. Forecasts were created from the estimated models from historical
data from 02.01.2019 to 31.07.2019 with hourly clusters and compared against the actual
electricity load observations on August (forecasting window of historical data). Again, the
model that used the HDD/CDD temperature variable created better forecasts in terms of
MAD and MAPE criteria. The MAD for the model was 2.540,4 against the second that had
a MAD of 3.476,86 (MAPE of 8,7% and 12,09% accordingly for each model). Interesting
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in the comparison between the regression models is that the pane data approach produced

post estimation forecasts that lack against the simple multivariate regression models.

5. Conclusions

Nowadays, energy consumption and especially electricity consumption is important for
economic activity and household everyday life since the expansion of technology has
created many devices that operate only with electricity. The importance of securing the
efficiency and reducing operational risk of the electricity grid has been cited from the
academic literature, market experts and policy makers. Forecasting the electricity
consumption has become crucial for the designing of long-term energy policies and the
continuous decarbonization of global energy mix. As the integration of renewable sources
of energy such as solar and wind power will continue to grow contributing in the
decarbonization of the European energy mix, efficient electricity load models should take
into consideration the intermitted and uncertain nature of renewable sources of energy. Thus,
models that incorporate different weather data (such as temperature, solar radiation and wind
speed) together with electricity generation capacity forecasts could improve electricity load
forecasting accuracy. In addition, from a corporate point of view accurate electricity load
forecasting is important for the maximization of the profitability of energy generation
companies and distribution companies. Lately, the expansion of smart meters in households
provides the opportunity of scheduling their electricity consumption for economically

benefit of low-price periods.

The vast amount of research on forecasting methodology and the modern computational and
statistical power are making electricity load forecasting more feasible. In this thesis, a
categorization and presentation of the most used forecasting models was made. Instead of
trying to develop a more complicated and sophisticated forecasting model, we tried to
examine how simpler models are capturing the behavior of electricity load and could provide
a reliable short-term forecast. Temperature effects were examined with a linear and a non-
linear specification. Regression models appeared to perform well based on overall goodness
of fit while the test hypothesis of the parameters showed that there is a causal relationship
between electricity load, average price and temperature. In addition, the effect of

temperature from the comparison of the R-squared of the two models appears to be non-
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linear (models that have as explanatory variables the HDD and CDD variables exhibited
better estimation results and better forecast accuracy metrics in the postestimation part of
the sample). However, the different behavior of electricity load at specific hours of the day
suggests that models that take into account those different characteristics should be

preferred.

In this dissertation, the econometric models examined appeared to perform well in creating
short-term predicted electricity load values. However, there is a limitation in adopting such
methodology for predicting the future of variables, since it requires information that is not
available at the time that the forecast is being made. On the other hand, time series models
such as the SMA and Autoregressive models could be used for creating forecasts since they
use only the previous information inherited in the time series process of electricity load. The
forecast of electricity load using the 168 previous hourly observations (SMA(168) or 7-day
hourly observation) presented a MAPE at around 9% which is considered as a good score.
A similar performance with a MAPE of 7% we observed with the SARIMA(2,0,2,12) model
arguing that autoregressive models could provide a reliable and fast solution for short term

electricity load forecasting.

As modern technology and artificial intelligence are increasing the computational
capabilities of statistical software and make their use easier even for no-experts in
econometrics, models that are combining the causal relationship between variables and time
series properties should be examined. Models that offer the ability to capture non-linear
dynamic relationships among variables, the memory of time series processes and have the
ability to learn such as neural networks and artificial neural networks could capture the

mechanisms of energy markets and create accurate forecasts.

Advanced machine learning techniques give the opportunity to researchers to apply
advanced learning algorithms such as deep and reinformed learning to improve forecasting
efficiency of electricity load and energy models. The expansion of the smart grid that offers
real time and high-resolution electricity load data gained from the smart meters and Internet
of Things (IoT) devices connected in the electricity grid offers opportunities for the adoption
of Big Data Analytics techniques in electricity load modeling, leveraging to an extend the
forecast error. The vast number of models in academic literature as also those examined in
this dissertation are using historical electricity load and other variables data to generate

forecasts for future periods. Big Data Analytics and real time availability of electricity data
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are offering a promising area for future research in adaptive real-time electricity load

forecasting for supporting dynamic decision making.
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Appendix A: Graphs

Graph A.1. SMA Forecast Plots at Specific Hour
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Graph A.2. Regression Forecasts for September 2019
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Graph A.3. ACF and PACF for In(Electricity Load)
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Graph A.4. SARIMA(2,0,2,12) Electricity Load Forecast
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Appendix B: Statistical Analysis Output

B1 Table: Regression Output from hourly observation sample until 31 August 2019

Source ss df MsS Number of obs = 5,807
F(11, 5795) = 731.33

Model 84.7769683 11 7.76699166 Prob > F 0.06000
Residual 61.0869859 5,795 .6168538371 R-squared 0.5813
Adj R-squared = 8.5805

Total 145.846767 5,806 .825126008 Root MSE = .18266
InTload | Coefficient Std. err. t P> | t| [95% conf. interval]
1nDAPrice .3752586 .80e89916 41.73 0.000 .3576318 .3928855
lnaver24 -.1715216 .8141257 -12.14 0.000 -.1992132 -.1438361
1nhdd -.08416294 .8018361 -22.75 0.000 -.8452171 -.8380416
1ncdd .088201 .8018169 48.54 0.000 .8846391 .8917629
d_tue .8325524 .8e51873 6.28 0.000 .8223834 .8427214
d_wed .8371885 .8051269 7.24 0.000 .8270499 .8471511
d_thur .8362713 . 8050985 7.11 0.000 .8262764 .8462661

d fri .8275364 .8e51133 5.39 0.000 .8175123 .8375685
d_sat -.08556502 .885143 -16.82 0.000 -.8657325 -.8455679
d_sun -.1152248 .8e51796 -22.25 0.000 -.1253788 -.16850768
month -.0298318 . 8009624 -31.00 0.000 -.8317185 -.8279451
_cons 9.597166 .8479161 200.32 0.000 9.583244 9.691688
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